Zero Memory Information Sources Approximating to Video Watermarking Attacks

  • M. Mitrea
  • O. Dumitru
  • F. Prêteux
  • A. Vlad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)


Under the framework of the watermarking applications, to accurately model the malicious attacks becomes nowadays a challenging research topic. Following a previous study pointing out the inner limitations of the popular Gaussian model, this paper computes for the first time accurate approximations for the zero memory information sources describing some main real life attacks in video watermarking: linear and non-linear filtering, rotations, and StirMark (which may emulate the in-theatre camcorder capture). In order to obtain these models, the authors advance an original and generic statistical approach for pdf estimation combining EM Gaussian mixtures and confidence limits. This investigation procedure does not rely on any a priori assumption concerning the video/attack stationarity and handles with mathematical rigour the dependency existing among successive frames in a video sequence.


watermarking attack pdf estimation stationarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Bangeman, E.: EU Commissioner criticizes iPod-iTunes tie-in, Ars Technica (March 11, 2007),
  3. 3.
    Fisher, K.: Musicload: 75% of customer service problems caused by DRM, Ars Technica (March 18, 2007),
  4. 4.
    Cox, I., Miller, M., Bloom, J.: Digital Watermarking. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  5. 5.
    Arnold, M., Schmucker, M., Wolthusen, S.: Techniques and Applications of Digital Watermarking and Content Protection. Artech House (2003)Google Scholar
  6. 6.
    Mitrea, M., Duta, S., Zaharia, T., Prêteux, F.: Ensuring Multimedia Content Adaptability by Means of Data Hiding Techniques. In: Proc. SPIE, vol. 6383, 63830P61-63830P6 (2006) Google Scholar
  7. 7.
    Mitrea, M., Prêteux, F., Vlad, A., Fetita, C.: The 2D-DCT Coefficient Statistical Behaviour: A Comparative Analysis on Different Types of Image Sequences. Journal of Optoelectronics and Advanced Materials 6, 95–102 (2004)Google Scholar
  8. 8.
    Mitrea, M., Prêteux, F., Petrescu, M.: Very Low Bitrate Video: A Statistical Analysis in the DCT Domain. In: Atzori, L., Giusto, D.D., Leonardi, R., Pereira, F. (eds.) VLBV 2005. LNCS, vol. 3893, pp. 99–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Mitrea, M., Prêteux, F., Petrescu, M., Vlad, A.: The StirMark Watermarking Attack in the DWT Domain. In: Proc. 12th IEEE International Conference on Systems, Signals and Image Processing, Halkida, Greece, vol. 2, pp. 5–9 (September 2005)Google Scholar
  10. 10.
    Mitrea, M., Zaharia, T., Prêteux, F., Vlad, A.: Video Watermarking Based on Spread Spectrum and Wavelet Decomposition. In: Proc. SPIE, vol. 5607, pp. 156-164 (2005) Google Scholar
  11. 11.
    Mitrea, M., Dumitru, O., Prêteux, F.: Video Watermarking Capacity in the DWT Hierarchy. In: Proc. SPIE, vol. 6576, 65760E1-65760E10 (2007)Google Scholar
  12. 12.
    Archambeau, C., Valle, M., Assenza, A., Verleysen, M.: Assessment of Probability Density Estimation Methods: Parzen Window and Finite Gaussian Mixtures. In: Proc. IEEE International Symposium on Circuits and Systems, Kos, Greece (May 2006) Google Scholar
  13. 13.
    Archambeau, C., Lee, J., Verleysen, M.: Convergence Problems of the EM Algorithm for Finite Gaussian Mixtures. In: Proc. 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 99–106 (April 2003) Google Scholar
  14. 14.
    Vlad, A., Mitrea, A., Mitrea, M.: A Corpus – Based Analysis of How Accurately Printed Romanian Obeys Some Universal Laws. In: Wilson, A., Rayson, P., McEnery, T. (eds): A Rainbow of Corpora: Corpus Linguistics and the Languages of the World, Ch. 15, Lincom Europa Publishing House, pp. 153–165 (2003) Google Scholar
  15. 15.
    Mitrea, M., Prêteux, F., Nunez, J.: Procédé de Tatouage d’une Séquence Video, French Patent Request 05 54132, deposed on December 2005, in the name of SFR and GET/INT (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Mitrea
    • 1
  • O. Dumitru
    • 1
  • F. Prêteux
    • 1
  • A. Vlad
    • 2
    • 3
  1. 1.ARTEMIS Department, National Institute on Telecommunications, EvryFrance
  2. 2.Faculty of Electronics, Telecommunications and Information Technology, POLITEHNICA University of BucharestRomania
  3. 3.The Research Institute for Artificial Intelligence, Romanian Academy 

Personalised recommendations