Skip to main content

Brain-Computer Interfaces (BCI): Restoration of Movement and Thought from Neuroelectric and Metabolic Brain Activity

  • Chapter
Coordination: Neural, Behavioral and Social Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This chapter provides an overview of the scientific and clinical progress in the development of non-invasive and invasive brain-computer interfaces (BCI). BCI uses electric, magnetic or metabolic brain activity for the activation and control of external devices and computers. Clinically, until now it has been successfully used as a communication system for totally paralyzed patients (“locked-in patients”), in restoration of movement after stroke or spinal cord injury and the treatment of epilepsy for example. Here we emphasize that BCI technology is a powerful tool to systematically induce neuroplastic changes and therefore has a significant potential to promote innovative approaches in neurorehabilitation. After a short introduction, the mechanisms underlying BCI control will be outlined and an overview of the available invasive and non-invasive BCI systems will be given. The differences and challenges in the use of BCI technology in healthy and patients with neurological disorders will be sketched. Newly developed approaches (i.e., using functional magnetic resonance imaging (fMRI) and near infrared spectroscopy (NIRS) to manipulate very localized and subcortical brain changes) and diverse applications of BCIs will be introduced. Besides a critical discussion of limitations and problems in BCI research and clinical application, ethical and quality of life issues will be addressed. The chapter ends with some remarks on future directions in the development of BCI systems introducing invasive and non-invasive neurostimulation techniques that can coequally initiate, enhance or stabilize neuroplastic changes induced by BCI use resulting in behavioral benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert S, Rabkin J, Del Bene M, Tider M, Mitsumoto H (2005) Wish to die in end-stage ALS. Neurology, 65:68–74

    Article  Google Scholar 

  2. Bandura A (1969) Social learning of moral judgements. Journal of Personality and Social Psychology, 11(3): 275–279

    Article  Google Scholar 

  3. Berger H (1929) Ueber das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87:527–570

    Article  Google Scholar 

  4. Birbaumer N (1999) Slow cortical potentials: Plasticity, operant control, and behavioral effects. The Neuroscientist, 5(2):74–78

    Article  Google Scholar 

  5. Birbaumer N (2006a) Brain-computer-interface research: Coming of age. Clinical Neurophysiology, 117:479–483

    Article  Google Scholar 

  6. Birbaumer N (2006b) Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43:517–532

    Article  Google Scholar 

  7. Birbaumer N, Cohen LG (2007) Brain-computer interfaces: Communication and restoration of movement in paralysis. Journal of Physiology, 579:621–636

    Article  Google Scholar 

  8. Birbaumer N, Kimmel H (Eds.) (1979) Biofeedback and Self-Regulation. Hillsdale: Erlbaum

    Google Scholar 

  9. Birbaumer N, Schmidt RF (2005) Biologische Psychologie (6th ed). Berlin Heidelberg New York: Springer

    Google Scholar 

  10. Birbaumer N, Elbert T, Rockstroh B, Lutzenberger W (1986) Biofeedback of slow cortical potentials in attentional disorders. In W.C. McCallum, R. Zappoli, and F. Denoth (Eds.), Cerebral Psychophysiology: Studies in Event-Related Potentials (pp. 440–442). Amsterdam: Elsevier

    Google Scholar 

  11. Birbaumer N, Elbert T, Canavan A, Rockstroh B (1990) Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70:1–41

    Google Scholar 

  12. Birbaumer N, Roberts L, Lutzenberger W, Rockstroh B, Elbert T (1992) Area-specific self-regulation of slow cortical potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology, 84:353–361

    Article  Google Scholar 

  13. Birbaumer N, Flor H, Cevey B, Dworkin B, Miller NE (1994) Behavioral treatment of scoliosis and kyphosis. Journal of Psychosomatic Research, 6:623–628

    Article  Google Scholar 

  14. Birbaumer N, Flor H, Lutzenberger W, Elbert T (1995) Chaos and order in the human brain. In G. Karmos and M. Molnar (Eds.), Perspectives of Event-Related Potentials Research (EEG Suppl. 44) (pp. 450–459). Amsterdam: Elsevier

    Google Scholar 

  15. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübier A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature, 398:97–298

    Article  Google Scholar 

  16. Birbaumer N, Veit R, Lotze M, Erb M, Hermann C, Grodd W, Flor H (2005) Deficient fear conditioning in psychopathy: A functional magnetic resonance imaging study. Archives of General Psychiatry, 62:799–805

    Article  Google Scholar 

  17. Breitbart W, Rosenfeld B, Penin H (2000) Depression, hopelessness, and desire for hastened death in terminally ill patients with cancer. Journal of American Medical Association, 284:2907–2911

    Article  Google Scholar 

  18. Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, Grodd W, Birbaumer N (2007) Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 35:1238–1246

    Article  Google Scholar 

  19. Cohen H, Kaplan Z, Kotier M, et al. (2004) Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: A double-blind, placebo-controlled study. American Journal of Psychiatry, 161:515–524

    Article  Google Scholar 

  20. Cuthbert B, Kristeller J, Simons R, Hodes R, Lang PJ (1981) Strategies of arousal control: Biofeedback, meditation, and motivation. Journal of Experimental Psychology: General, 110(4):518–546

    Article  Google Scholar 

  21. DeCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JD, Mackey SC (2005) Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences, USA, 102(51):18626–18631

    Article  Google Scholar 

  22. Donchin E (1981) Surprise!...Surprise? Psychophysiology, 18:493–513

    Article  Google Scholar 

  23. Donoghue JP (2002) Connecting cortex to machines: Recent advances in brain interfaces. Nature Neuroscience, 5:1085–1088

    Article  Google Scholar 

  24. Dworkin BR, Miller NE (1986) Failure to replicate visceral learning in the acute curarized rat preparation. Behavioral Neuroscience, 100:299–314

    Article  Google Scholar 

  25. Dworkin B, Miller NE, Dworkin S, Birbaumer N, Brines M, Jonas S, Schwentker E, Graham J (1985) Behavioral method for the treatment of idiopathic scoliosis. Proceedings of the National Academy of Sciences, USA, 82:2493–2497

    Article  Google Scholar 

  26. Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (Eds.) (1984) Self-Regulation of the Brain and Behavior. New York: Springer

    Google Scholar 

  27. Engel BT (1981) Clinical biofeedback: A behavioral analysis. Neuroscience and Biobehavioral Reviews, 5(3):397–400

    Article  MathSciNet  Google Scholar 

  28. Farwell LA, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70:510–523

    Article  Google Scholar 

  29. Flor H, Birbaumer N (1993) Comparison of the efficacy of EMG biofeed-back, cognitive behavior therapy, and conservative medical interventions in the treatment of chronic musculoskeletal pain. Journal of Consulting & Clinical Psychology, 61(4):653–658

    Article  Google Scholar 

  30. Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation-technical, safety and functional aspects. Supplements of Clinical Neurophysiology, 56:255–276

    Article  Google Scholar 

  31. Fregni F, Simon DK, Wu A, Pascual-Leone A (2005) Non-invasive brain stimulation for Parkinson’s disease: A systematic review and meta-analysis of the literature. Journal of Neurology, Neurosurgery, and Psychiatry, 76:1614–1623

    Article  Google Scholar 

  32. Fuchs T, Birbaumer N, Lutzenberger W, Gruzelier JH, Kaiser J (2003) Neurofeed back training for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28(1):1–12

    Article  Google Scholar 

  33. Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9):396–403

    Article  Google Scholar 

  34. Gastaut H (1952) Electrocorticographic study of the reactivity of rolandic rhythm. Review Neurologique (Paris), 87(2):176–182

    Google Scholar 

  35. Gastaut H, Terzian H, Gastaut Y (1952) Study of a little electroencephalographic activity: Rolandic arched rhythm. Marseille Medical, 89(6):296–310

    Google Scholar 

  36. Giacobbe P, Kennedy SH (2006) Deep brain stimulation for treatment-resistant depression: A psychiatric perspective. Current Psychiatry Reports, 8:437–444

    Article  Google Scholar 

  37. Henderson JM, Lad SP (2006) Motor cortex stimulation and neuropathic facial pain. Neurosurgical Focus, 15(21):E6

    Google Scholar 

  38. Hinterberger T, Veit R, Strehl U, Trevorrow T, Erb M, Kotchoubey B, Flor H, Birbaumer N (2003) Brain areas activated in fMRI during self regulation of slow cortical potentials (SCPs). Experimental Brain Research, 152:113–122

    Article  Google Scholar 

  39. Hinterberger T, Weiskopf N, Veit R, Wilhelm B, Betta E, Birbaumer N (2004) An EEG-driven brain-computer-interface combined with functional magnetic resonance imaging (fMRI). IEEE Transactions on Biomedical Engineering, 51(6):971–974

    Article  Google Scholar 

  40. Hinterberger T, Birbaumer N, Flor H (2005a) Assessment of cognitive function and communication ability in a completely locked-in patient. Neurology, 64:1307–1308

    Google Scholar 

  41. Hinterberger T, Veit R, Wilhelm B, Weiskopf N, Vatine J-J, Birbaumer N (2005b) Neuronal mechanisms underlying control of a brain-computer-interface. European Journal of Neuroscience, 21:3169–3181

    Article  Google Scholar 

  42. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neural ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442:164–171

    Article  Google Scholar 

  43. Hoelzl R, Whitehead W (Eds) (1983) Psychophysiology of the Gastrointestinal Tract. New York: Plenum Press

    Google Scholar 

  44. Hoffman RE, Gueorguieva R, Hawkins KA, et al. (2005) Temporoparietal transcranial magnetic stimulation for auditory hallucinations: Safety, efficacy and moderators in a fifty patient sample. Biological Psychiatry, 58, 97–104

    Article  Google Scholar 

  45. Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: A new strategy to improve neuro-rehabilitation after stroke? Lancet Neurology, 5, 708–712

    Article  Google Scholar 

  46. Hummel F et al. (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128:490–499

    Article  Google Scholar 

  47. Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature, 444:56–60

    Article  Google Scholar 

  48. Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen, J, Stoier M, Olsen TS (1995a) Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 76:406–412. Doi: 10.1016/S0003-9993(95)80568-0

    Article  Google Scholar 

  49. Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M, Olsen TS (1995b) Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 76:399–405

    Article  Google Scholar 

  50. Karim AA, Kammer T, Lotze M, Nitsche MA, Godde B, Hinterberger T, Cohen LG, Birbaumer N (2004) Effects of TMS and tDCS on the physiological Regulation of cortical excitability in a Brain-Computer Interface. Biomedical Engineering 49(l):55–57

    Google Scholar 

  51. Kennedy PR, Kirby MT, Moore MM, King B, Mallory A (2004) Computer control using human intracortical local field potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(3):339–344

    Article  Google Scholar 

  52. Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 65:466–468

    Article  Google Scholar 

  53. Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, König M, Fröscher W, Blankenhorn V, Birbaumer N (2001) Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42(3):406–416

    Article  Google Scholar 

  54. Kübler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N (2001a) Braincomputer communication: Unlocking the locked-in. Psychological Bulletin, 127(3):358–375

    Article  Google Scholar 

  55. Kübler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer N (2001b) Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Archives of Physical Medicine and Rehabilitation, 82:1533–1539

    Article  Google Scholar 

  56. Kübler A, Winter S, Ludolph AC, Hautzinger M, Birbaumer N (2005a) Severity of depressive symptoms and quality of life in patients with amyotrophic lateral sclerosis. Neurorehabilitation and Neural Repair, 19(3):182–193

    Article  Google Scholar 

  57. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR (2005b) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64:1775–1777

    Article  Google Scholar 

  58. Lang P, Bradley M, Cuthbert B (1999) International Affective Picture System. Gainesville, Fl: The Center for Research in Psychophysiology, University of Florida

    Google Scholar 

  59. Lefaucheur JP (2004) Transcranial magnetic stimulation in the management of pain. Clinical Neurophysiology (Supplement), 57:737–748

    Google Scholar 

  60. Logothetis N, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature, 412:150–157

    Article  Google Scholar 

  61. Lulé D, Kurt A, Jürgens R, Kassubek J, Diekmann V, Kraft E, Neumann N, Ludolph AC, Birbaumer N, Anders S (2005) Emotional responding in amyotrophic lateral sclerosis. Journal of Neurology, 252:1517–1524

    Article  Google Scholar 

  62. Lutzenberger W, Birbaumer N, Elbert T (1980) Self-regulation of slow cortical potentials in patients with frontal lobe lesions. In: Kornhuber H, Deecke L (eds) Motivation, Motor and Sensory Processes of the Brain, Elsevier, Amsterdam

    Google Scholar 

  63. Mansur CG, Fregni F, Boggio PS et al. (2005) A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 64:1802–1804

    Article  Google Scholar 

  64. McGrady A, Olson P, Kroon J (1995) Biobehavioral treatment of essential hypertension. In M. Schwartz (Ed.) Biofeedback (2nd ed), New York: Guilford

    Google Scholar 

  65. Miller N (1969) Learning of visceral and glandular responses. Science, 163:434–445

    Article  Google Scholar 

  66. Miniussi C, Bonato C, Bignotti S et al. (2005) Repetitive transcranial magnetic simulation (rTMS) at high and low frequency: An efficacious therapy for major drug-resistant depression? Clinical Neurophysiology, 116:1062–1071

    Article  Google Scholar 

  67. Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nature Reviews Neuroscience, 4(5):417–422

    Article  Google Scholar 

  68. Pfurtscheller G, Neuper C, Birbaumer N (2005) Human brain-computer interface (BCI). In A. Riehle and E. Vaadia (Eds.), Motor Cortex in Voluntary Movements. A Distributed System for Distributed Functions (pp. 367–401). Boca Raton: CRC Press

    Google Scholar 

  69. Plewnia C, Reimold M, Najib A, Reischl G, Plontke SK, Gerloff C (2007) Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: A randomised, controlled pilot study. Journal of Neurology, Neurosurgery, and Psychiatry. 78:152–156

    Article  Google Scholar 

  70. Quill TE (2005) ALS, depression, and desire for hastened death: (How) are they related? Neurology, 65:1

    Article  Google Scholar 

  71. Rockstroh B, Elbert T, Birbaumer N, Lutzenberger W (1989) Slow Brain Potentials and Behavior (2. Aufl.). Baltimore, MD: Urban & Schwarzenberg

    Google Scholar 

  72. Rockstroh B, Elbert T, Birbaumer N, Wolf P, Düchting-Röth A, Reker M et al. (1993) Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14:63–72

    Article  Google Scholar 

  73. Scherberger H et al. (2005) Cortical local field potentials encodes movement intentions in the posterior parietal cortex. Neuron, 46:347–354

    Article  Google Scholar 

  74. Schneider F, Rockstroh B, Heimann H, Lutzenberger W, Mattes R, Elbert T, Birbaumer N, Bartels M (1992) Self-regulation of slow cortical potentials in psychiatric patients: Schizophrenia. Biofeedback & Self-Regulation, 17(4):277–292

    Article  Google Scholar 

  75. Schwartz AB (2007) Useful signals from motor cortex. Journal of Physiology, 579:581–601

    Article  Google Scholar 

  76. Sellers EW, Donchin EA (2006) A P300 based brain-computer interface: Initial tests by ALS patients. Clinical Neurophysiology, 117(3):538–548

    Article  Google Scholar 

  77. Skinner F (1953) Science and Human Behavior. New York: Macmillan

    Google Scholar 

  78. Sterman MB (1977) Sensorimotor EEG operant conditioning: Experimental and clinical effects. The Pavlovian Journal of Biological Science, 12(2):63–92

    Google Scholar 

  79. Sterman MB (1981) EEG biofeedback: Physiological behavior modification. Neuroscience and Biobehavioral Reviews, 5:405–412

    Article  Google Scholar 

  80. Sterman MB, Clemente CD (1962a) Forebrain inhibitory mechanisms: Cortical synchronization induced by basal forebrain stimulation. Experimental Neurology, 6:91–102

    Article  Google Scholar 

  81. Sterman MB, Clemente CD (1962b) Forebrain inhibitory mechanisms: Sleep patterns induced by basal forebrain stimulation in the behaving cat. Experimental Neurology, 6:103–117

    Article  Google Scholar 

  82. Sterman MB, and Friar L (1972) Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and Clinical Neurophysiology, 33(l):89–95

    Article  Google Scholar 

  83. Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N (2006) Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118:1530–1540

    Article  Google Scholar 

  84. Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science, 296:1829–1832

    Article  Google Scholar 

  85. Theodore WH (2003) Transcranial magnetic stimulation in epilepsy. Epilepsy Currents, 3:191–197

    Article  Google Scholar 

  86. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. Neurolmage, 19:577–586

    Article  Google Scholar 

  87. Weiskopf N, Scharnowsi F, Veit R, Goebel R, Birbaumer N, Mathiak K (2005) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology, Paris, 98:357–373

    Article  Google Scholar 

  88. Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, Goebel R, Birbaumer N, Deichmann I, Mathiak K (2007) Real-time functional magnetic resonance imaging: Methods and applications. Magnetic Resonance Imaging 25:898–1003

    Article  Google Scholar 

  89. Wilhelm B, Jordan M, Birbaumer N (2006) Communication in locked-in syndrome: Effects of imagery on salivary pH. Neurology, 67:534–535

    Article  Google Scholar 

  90. Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. Journal of Physiology, 579:613–619

    Article  Google Scholar 

  91. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Science USA, 101(51): 17849–17854

    Article  Google Scholar 

  92. Yoo SS, Fairneny T, Chen NK, Choo SE, Panych LP, Park H, Lee SY, Jolesz FA (2004) Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport, 15:1591–1595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soekadar, S.R., Haagen, K., Birbaumer, N. (2008). Brain-Computer Interfaces (BCI): Restoration of Movement and Thought from Neuroelectric and Metabolic Brain Activity. In: Fuchs, A., Jirsa, V.K. (eds) Coordination: Neural, Behavioral and Social Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74479-5_11

Download citation

Publish with us

Policies and ethics