Advertisement

Neural Indices of Behavioral Instability in Coordination Dynamics

  • Olivier Oullier
  • Kelly J. Jantzen
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

In studies of coordination dynamics, behavioral coordination has proven a rich entry point for uncovering principles and mechanisms of human action [46, 104]. Within this conceptual and theoretical framework, coordination is defined in terms of collective (or coordination) variables that specify the spatiotemporal ordering between component parts. In the vicinity of critical points, emergent behavior is governed by the low-dimensional dynamics of these collective variables [33]. Seminal studies of motor coordination conducted in the late 1970s used nonlinear dynamics as a framework to underst and bimanual coordination [44, 45, 52, 56]. The influential results of this work demonstrated the self-organized nature of coordinated rhythmic behavior by showing that the global pattern generated by the combined movement of individual fingers is captured at the collective level by the value of an order parameter that, in this and many cases, turns out to be the relative phase between the coordinated elements. The low-dimensional dynamics of this self-organized system is revealed via manipulating a nonspecific parameter referred to as control parameter that guides the system through its various states without directly specifying those states. A quantitative change of the control parameter gives rise to a qualitative change of the order parameter via a nonequilibrium phase transition [55]. Such transitions, together with other key features, including critical slowing down and multi-stability, are classic hallmarks of self-organizing systems [46].

Keywords

Supplementary Motor Area Coordination Pattern Bimanual Coordination Coordination Dynamic Interpersonal Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amazeen PG, Amazeen EL, Turvey MT (2004) Symmetry and the devil. J Mot Behav 36:371–372Google Scholar
  2. 2.
    Balasubramaniam R, Wing AM (2002) The dynamics of standing balance. Trends in Cogn Sci 6:531–536Google Scholar
  3. 3.
    Balasubramaniam R, Wing AM, Daffertshofer A (2004) Keeping with the beat: Movement trajectories contribute to movement timing. Exp Brain Res 159:129–134Google Scholar
  4. 4.
    Bardy BG, Marin L, Stoffregen TA, Bootsma RJ (1999) Postural coordination modes considered as emergent phenomena. J Exp Psychol Hum Percept Perform 25:1284 1301Google Scholar
  5. 5.
    Bardy BG, Oullier O, Bootsma RJ, Stoffregen TA (2002) Dynamics of human postural transitions. J Exp Psychol Hum Percept Perform 28:499–514Google Scholar
  6. 6.
    Barsalou LW, Niedenthal PM, Barbey AK, Ruppert JA (2003) Social embodiment. Psychol Learn Motiv Adv Re Theor, 43:43–92CrossRefGoogle Scholar
  7. 7.
    Buchanan JJ, Kelso JAS, de Guzman GC (1997) Self-organization of trajectory formation. 1. Experimental evidence. Biol Cybern 76:257–273zbMATHGoogle Scholar
  8. 8.
    Bunge SA, Hazeltine E, Scanlon MD, Rosen AC, Gabrieli JDE (2002) Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage 17:1562–1571Google Scholar
  9. 9.
    Carson RG, Chua R, Byblow WD, Poon P, Smethurst CJ (1999) Changes in posture alter the attentional demands of voluntary movement. Proc R Soc Lond B-Biol Sci 266:853–857Google Scholar
  10. 10.
    Carson RG, Riek S (1998) The influence of joint position on the dynamics of perception-action coupling. Exp Brain Res 121:103–114Google Scholar
  11. 11.
    Carson RG, Riek S (2001) Changes in muscle recruitment patterns during skill acquisition. Exp Brain Res 138:71–87Google Scholar
  12. 12.
    Carson RG, Riek S, Smethurst CJ, Parraga JF, Byblow WD (2000) Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Exp Brain Res 131:196–214Google Scholar
  13. 13.
    Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J (2001) Brain areas involved in interlimb coordination: A distributed network. Neuroimage 14:947–958Google Scholar
  14. 14.
    Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: Differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776Google Scholar
  15. 15.
    Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: Parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage 21:1416–1427Google Scholar
  16. 16.
    de Guzman GC, (2004) It is a matter of symmetry. Personal communication to the authors.Google Scholar
  17. 17.
    Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 7:73–85Google Scholar
  18. 18.
    de Rugy A, Salesse R, Oullier O, Temprado JJ (2006) A neuro-mechanical model for interpersonal coordination. Biol Cybern 94:427–443zbMATHGoogle Scholar
  19. 19.
    de Rugy A, Sternad D (2003) Interaction between discrete and rhythmic movements: Reaction time and phase of discrete movement initiation during oscillatory movements. Brain Res 994:160–174Google Scholar
  20. 20.
    Diedrich FJ, Warren WH (1995) Why change gaits? Dynamics of the walk run transition. J Exp Psychol Hum Percept Perform 21:183–202Google Scholar
  21. 21.
    Diedrich FJ, Warren WH (1998) The dynamics of gait transitions: Effects of grade and load. J Mot Behav 30:60–78CrossRefGoogle Scholar
  22. 22.
    Diedrichsen J, Hazeltine E, Ivry R, Kennerley S, Spencer B (2002) Comparing continuous and discrete movements with fMRI. Ann NY Acad Sci 978:509–510Google Scholar
  23. 23.
    Engstrøm DA, Kelso JAS, Holroyd T (1996) Reaction-anticipation transitions in human perception-action patterns. Hum Mov Sci 15:809–832Google Scholar
  24. 24.
    Fraisse P (1966) L’anticipation de stimulus rythmiques:Vitesse d’tablissement et pecision de la synchronisation. L’Année Psychologique 66:15–36Google Scholar
  25. 25.
    Fraisse P (1982) Rhythm and tempo. In: Deutsch D (ed) Psychology of music. Academic Press, New York, pp. 149–180Google Scholar
  26. 26.
    Fraisse P, Ehrlich S (1955) Note sur la possibilité de syncoper en fonction du tempo d’une cadence. L’Année Psychologique 55:61–65Google Scholar
  27. 27.
    Fuchs A, Jirsa VK (2008, this volume) J.A. Scott Kelso’s contributions to our understanding of coordination. In: Fuchs A, Jirsa VK (eds) Coordination: Neural, behavioral and social dynamics. Springer, Berlin, pp. 329–348.Google Scholar
  28. 28.
    Fuchs A, Jirsa VK, Haken H, Kelso JAS (1996) Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biol Cybern 74:21–30zbMATHGoogle Scholar
  29. 29.
    Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in the human brain: Spatial mode dynamics. Int J Bifurcat Chaos 2:917–939zbMATHGoogle Scholar
  30. 30.
    Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS (2000) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12:71–84Google Scholar
  31. 31.
    Haken H (1983) Advanced synergetics. Springer-Verlag, HeidelbergzbMATHGoogle Scholar
  32. 32.
    Haken H (1977) Synergetics: An Introduction. Springer-Verlag, BerlinzbMATHGoogle Scholar
  33. 33.
    Haken H, Kelso JAS, Bunz H (1985) A theoretical-model of phase-transitions in human hand movements. Biol Cybern 51:347–356zbMATHMathSciNetGoogle Scholar
  34. 34.
    Huys R, Jirsa VK, Studenka B, Rheaume N, Zelaznik HN (2008, this volume) Human trajectory formation: Taxonomy of motor primitives based on phase flow topology. In: Fuchs A, Jirsa VK (eds) Coordination: Neural, behavioral and social dynamics. Springer, Berlin, pp. 77–92.Google Scholar
  35. 35.
    Ivry RB, Spencer RMC (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232Google Scholar
  36. 36.
    Jantzen KJ, Kelso JAS (2007) Neural coordination dynamics of human sensorimotor behavior: A Review. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer-Verlag, Berlin, pp. 421–461Google Scholar
  37. 37.
    Jantzen KJ, Oullier O, Marshall M, Steinberg FL, Kelso JA (2007) A parametric fMRI investigation of context effects in sensorimotor timing and coordination. Neuropsychologia 45:673–684Google Scholar
  38. 38.
    Jantzen KJ, Steinberg FL, Kelso JAS (2002) Practice-dependent modulation of neural activity during human sensorimotor coordination: A functional Magnetic Resonance Imaging study. Neurosci Lett 332:205–209Google Scholar
  39. 39.
    Jantzen KJ, Steinberg FL, Kelso JAS (2004) Brain networks underlying human timing behavior are influenced by prior context. Proc Nat Acad Sci USA 101:6815–6820Google Scholar
  40. 40.
    Jantzen KJ, Steinberg FL, Kelso JAS (2005) Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage 25:1031–1042Google Scholar
  41. 41.
    Jantzen KJ, Steinberg FL, Kelso JAS (sumbitted) Neural dynamics during sensorimotor coordination are related to pattern stability. Manuscript submitted for publicationGoogle Scholar
  42. 42.
    Jeka JJ, Kelso JAS (1995) Manipulating Symmetry in the Coordination Dynamics of Human Movement. J Exp Psychol Hum Percept Perform 21:360–374Google Scholar
  43. 43.
    Jirsa VK, Kelso JAS (2004) Coordinations dynamics: Issues and Trends. Springer-Verlag, BerlinGoogle Scholar
  44. 44.
    Kelso JAS (1981) On the oscillatory basis of movement. Bull Psychon Soc 18:63Google Scholar
  45. 45.
    Kelso JAS (1984) Phase-transitions and critical behavior in human bimanual coordination. Am J Physiol 246:1000–1004Google Scholar
  46. 46.
    Kelso JAS (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press, CambridgeGoogle Scholar
  47. 47.
    Kelso JAS, Bressler SL, Buchanan S, de Guzman GC, Ding M, Fuchs A, Holroyd T (1992) A phase-transition in human brain and behavior. Phys Lett A 169:134–144Google Scholar
  48. 48.
    Kelso JAS, DelColle J, Schöner G (1990) Action-perception as a pattern formation process. In: Jeannerod M (ed) Attention and Performance XIII. Erlbaum, Hillsdale, pp. 139–169Google Scholar
  49. 49.
    Kelso JAS, Engstrøm DA (2006) The complementary nature. MIT Press, CambridgeGoogle Scholar
  50. 50.
    Kelso JAS, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordination dynamics. Proc R Soc Lond B-Biol Sci 268:1207–1213Google Scholar
  51. 51.
    Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H (1998) Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392:814–818Google Scholar
  52. 52.
    Kelso JAS, Holt KG, Kugler PN, Turvey MT (1980) On the concept of coordinative structures as dissipative structures: II. Empirical lines of convergence. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North Holland, Amsterdam, pp. 49–70Google Scholar
  53. 53.
    Kelso JAS, Jeka JJ (1992) Symmetry-breaking dynamics of human multilimb coordination. J Exp Psychol Hum Percept Perform 18:645–668Google Scholar
  54. 54.
    Kelso JAS, Scholz JP, Schöner G (1986) Nonequilibrium phase-transitions in coordinated biological motion — Critical fluctuations. Phys Lett A 118:279–284Google Scholar
  55. 55.
    Kelso JAS, Schöner G, Scholz JP, Haken H (1987) Phase-locked modes, phase transitions and component oscillators in coordinated biological motion. Physica Scripta 35:79–87Google Scholar
  56. 56.
    Kelso JAS, Southard DL, Goodman D (1979) On the nature of interlimb coordination. Science 203:1029–1031Google Scholar
  57. 57.
    Kelso JAS, Zanone PG (2002) Coordination dynamics of learning and transfer across different effector systems. J Exp Psychol Hum Percept Perform 280: 776–797Google Scholar
  58. 58.
    Lagarde J, de Guzman GC, Oullier O, Kelso JAS (2006) Interpersonal interactions during boxing: Data and model. J Sport Exerc Psychol 28:S108–S108Google Scholar
  59. 59.
    Lagarde J, Kelso JAS (2006) Binding of movement, sound and touch:multimodal coordination dynamics. Exp Brain Res 173:673–688Google Scholar
  60. 60.
    Lagarde J, Kelso JAS, Peham C, Licka T (2005) Coordination dynamics of the horse-rider system. J Motor Behav 37:418–424Google Scholar
  61. 61.
    Lee TD, Almeida QJ, Chua R (2002) Spatial constraints in bimanual coordination: Influences of effector orientation. Exp Brain Res 146:205–212Google Scholar
  62. 62.
    Mayville JM, Bressler SL, Fuchs A, Kelso JAS (1999) Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127: 371–381Google Scholar
  63. 63.
    Mayville JM, Fuchs A, Ding MZ, Cheyne D, Deecke L, Kelso JAS (2001) Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks. Hum Brain Mapp 14:65–80Google Scholar
  64. 64.
    Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS (2002) Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Hum Brain Mapp 17:214–229Google Scholar
  65. 65.
    McGarva AR, Warner RM (2003) Attraction and social coordination: Mutual entrainment of vocal activity rhythms. J Psycholinguist Res 32:335–354Google Scholar
  66. 66.
    Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73Google Scholar
  67. 67.
    Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Nat Acad Sci USA 99:10948–10953Google Scholar
  68. 68.
    Molholm S, Sehatpour P, Mehta AD, Shpaner M, Gomez-Ramirez M, Ortigue S, Dyke JP, Schwartz TH, Foxe JJ (2006) Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. J Neurophysiol 96:721–729Google Scholar
  69. 69.
    Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: A functional MRI study. Cognit Brain Res 15:250–260Google Scholar
  70. 70.
    Néda Z, Ravasz E, Brechet Y, Vicsek T, Barabasi AL (2000) The sound of many hands clapping — Tumultuous applause can transform itself into waves of synchronized clapping. Nature 403:849–850Google Scholar
  71. 71.
    Oullier O, Bardy BG, Stoffregen TA, Bootsma RJ (2002) Postural coordination in looking and tracking tasks. Hum Mov Sci 21:147–167Google Scholar
  72. 72.
    Oullier O, de Guzman GC, Jantzen KJ, Kelso JAS (2003) On context dependence of behavioral variability in inter-personal coordination. Int J Comput Sci Sport 2:126–128Google Scholar
  73. 73.
    Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Kelso JAS (2008) Social coordination dynamics: Measuring human bonding. Soc Neurosci, manuscript in press.Google Scholar
  74. 74.
    Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (2003) fMRI reveals neural mechanisms common to sensorimotor and bi-manual coordination. Society for Neuroscience CD-ROM 554.6Google Scholar
  75. 75.
    Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (2005) Neural substrates of real and imagined sensorimotor coordination. Cereb Cortex 15:975–985Google Scholar
  76. 76.
    Oullier O, Jantzen KJ, Steinberg F, Kelso JAS (2006) Neural correlates of rhythmic and reactive sensorimotor coordination. In: Hoppeler H, Reilly T, Tsolakidis E, Gfeller L, Klossner S (eds) European College of Sport Sciences. Sportverlag Strauss, Cologne, pp. 34–35Google Scholar
  77. 77.
    Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (submitted) Neural dynamics of continuous and disrete coordination. Manuscript submitted for publicationGoogle Scholar
  78. 78.
    Oullier O, Lagarde J, Jantzen KJ, Kelso JAS (2006) Coordination dynamics: (in)stability and metastability in the behavioural and neural systems. Journal de la Société de Biologie 200:145–167Google Scholar
  79. 79.
    Oullier O, Marin L, Stoffregen TA, Bootsma RJ, Bardy BG (2006) Variability in postural coordination dynamics. In: Davids K, Bennett S, Newell KM (eds) Movement system variability. Human Kinetics, Champaign, pp. 25–47Google Scholar
  80. 80.
    Park H, Turvey M (2008, this volume) Imperfect symmetry and the elementary coordination law. In: Fuchs A, Jirsa VK (eds) Coordination: Neural, behavioral and social dynamics. Springer, Berlin, pp. 3–25Google Scholar
  81. 81.
    Richardson MJ, Marsh KL, Schmidt RC (2005) Effects of visual and verbal interaction on unintentional interpersonal coordination. J Exp Psychol Hum Percept Perform 31:62–79Google Scholar
  82. 82.
    Riek S, Carson RG, Byblow WD (1992) Spatial and muscular dependencies in bimanual coordination. J Hum Mov Stud 23:251–265Google Scholar
  83. 83.
    Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: Anatomy and functions. Exp Brain Res 153:146–157Google Scholar
  84. 84.
    Roth M, Decety J, Raybaudi M, Massarelli R, Delon-Martin C, Segebarth C, Morand S, Gemignani A, Decorps M, Jeannerod M (1996) Possible involvement of primary motor cortex in mentally simulated movement: A functional magnetic resonance imaging study. Neuroreport 7:1280–1284CrossRefGoogle Scholar
  85. 85.
    Salesse R, Oullier O, Temprado JJ (2005) Plane of motion mediates the coalition of constraints in rhythmic bimanual coordination. J Mot Behav 37: 454–464Google Scholar
  86. 86.
    Salesse R, Temprado JJ (2005) The effect of visuo-motor transformations on hand-foot coordination:evidence in favor of the incongruency hypothesis. Acta Psychol 119:143–157Google Scholar
  87. 87.
    Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1137–1144Google Scholar
  88. 88.
    Schmidt RC, Carello C, Turvey MT (1990) Phase-transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16:227–247Google Scholar
  89. 89.
    Schmidt RC, Richardson MJ(2008, this volume) Dynamics of interpersonal coordination. In: Fuchs A, Jirsa VK (eds) Coordination: Neural, behavioral and social dynamics. Springer, Berlin, pp. 283–310Google Scholar
  90. 90.
    Schöner G, Jiang WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142:359–391Google Scholar
  91. 91.
    Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520Google Scholar
  92. 92.
    Solveig M (2002) Sur la terre. Mixture, ParisGoogle Scholar
  93. 93.
    Spencer RMC, Zelaznik HN, Ivry RB, Diedrichsen J (2002) Does the cerebellum preferentially control discrete and not continuous movements? Ann NY Acad Sci 978:542–544Google Scholar
  94. 94.
    Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A, Tass P, Posse S, Herzog H, Sturm V, Zilles K, Scitz RJ, Freund HJ (1999) The role of ventral medial wall motor areas in bimanual co-ordination — A combined lesion and activation study. Brain 122:351–368Google Scholar
  95. 95.
    Sternad D (2008, this volume) Towards a unified theory of rhythmic and discrete movements — Behavioral, modeling and imaging results. In: Fuchs A, Jirsa VK (eds) Coordination: Neural, behavioral and social dynamics. Springer, Berlin, pp. 105–133Google Scholar
  96. 96.
    Sternad D, Wei K, Diedrichsen J, Ivry RB (2007) Intermanual interactions during initiation and production of rhythmic and discrete movements in individuals lacking a corpus callosum. Exp Brain Res 176:559–574Google Scholar
  97. 97.
    Steyvers M, Etoh S, Sauner D, Levin O, Siebner HR, Swinnen SP, Rothwell JC (2003) High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Exp Brain Res 151:309–317Google Scholar
  98. 98.
    Stoffregen TA (1985) Flow structure versus retinal location in the optical control of stance. J Exp Psychol Hum Percept Perform 11:554–565Google Scholar
  99. 99.
    Swinnen SP (2002) Intermanual coordination: From behavioural principles to neural-network interactions. Nat Rev Neurosci 3:348–359Google Scholar
  100. 100.
    Swinnen SP, Wenderoth N (2004) Two hands, one brain: Cognitive neuroscience of bimanual skill. Trends Cognitive Sci 8:18–25Google Scholar
  101. 101.
    Temprado JJ (2004) A dynamical approach to the interplay of attention and bimanual coordination. In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: Issues and trends. Springer-Verlag, Berlin, pp. 21–39Google Scholar
  102. 102.
    Temprado JJ, Swinnen SP, Carson RG, Tourment A, Laurent M (2003) Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Hum Mov Sci 22:339–363Google Scholar
  103. 103.
    Temprado JJ, Zanone PG, Monno A, Laurent M (1999) Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25:1579–1594Google Scholar
  104. 104.
    Turvey MT (1990) Coordination. Am Psychol 45:938–953Google Scholar
  105. 105.
    Turvey MT, Rosenblum LD, Schmidt RC, Kugler PN (1986) Fluctuations and phase symmetry in coordinated rhythmic movements. J Exp Psychol Hum Percept Perform 12:564–583Google Scholar
  106. 106.
    Utall WR (2001) The new phrenology. MIT Press, CambridgeGoogle Scholar
  107. 107.
    van Mourik AM, Beek PJ (2004) Discrete and cyclical movements:unified dynamics or separate control? Acta Psychol 117:121–138Google Scholar
  108. 108.
    Wenderoth N, Debaere F, Sunaert S, Van Hecke P, Swinnen SP (2004) Parietopremotor areas mediate directional interference during bimanual movements. Cereb Cortex 14:1153–1163Google Scholar
  109. 109.
    Wenderoth N, Debaere F, Sunaert S, Swinnen SP (2005) Spatial interference during bimanual coordination: Differential brain networks associated with control of movement amplitude and direction. Hum Brain Mapp 26:286–300Google Scholar
  110. 110.
    Yue GH, Liu JZ, Siemionow V, Ranganathan VK, Ng TC, Sahgal V (2000) Brain activation during human finger extension and flexion movements. Brain Res 856:291–300Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Olivier Oullier
    • 1
  • Kelly J. Jantzen
    • 2
  1. 1.Laboratoire de Neurobiologie Humaine (UMR 6149)Aix-Marseille UniversitéMarseilleFrance
  2. 2.Department of PsychologyWestern Washington UniversityBellinghamUSA

Personalised recommendations