Skip to main content

Embedded Scale United Moment Invariant for Identification of Handwriting Individuality

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4705))

Included in the following conference series:

Abstract

Past few years, a lot of research on moment functions have been explored in pattern recognition. Several new techniques have been investigated to improve conventional regular moment by proposing the scaling factor of geometrical function. In this paper, integrated scaling formulations of Aspect Invariant Moment and Higher Order Scaling Invariant with United Moment Invariant are presented in Writer Identification to seek the invarianceness of authorship or individuality of handwriting perseverance. Mathematical proving and results of computer simulations are included to verify the validity of the proposed technique in identifying eccentricity of the author in Writer Identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liao, S.X.: Image Analysis by Moment. Ph.D. thesis, University of Manitoba, Canada (1993)

    Google Scholar 

  2. Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis - Theory and Applications. World Scientific Publishing Co.Pte.Ltd., Singapore (1998)

    MATH  Google Scholar 

  3. Hu, M.K.: Visual Pattern Recognition by Moment Invariants. IRE Transaction on Information Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  4. Alt, F.L.: Digital Pattern Recognition by Moments. Journal of the ACM (JACM) 9(2), 240–258 (1962)

    Article  MATH  Google Scholar 

  5. Reiss, T.H.: The Revised Fundamental Theorem of Moment Invariants. Pattern Analysis and Machine Intelligence, IEEE Transactions 13(8), 830–834 (1991)

    Article  Google Scholar 

  6. Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern Recognition With Moment Invariants: A Comparative Study and New Results. Pattern Recognition 24(12), 1117–1138 (1991)

    Article  Google Scholar 

  7. Pan, F., Keane, M.: A new set of moment invariants for handwritten numeral recognition. In: Image Processing, Proceedings. ICIP-94. IEEE International Conference, vol. 1, pp. 154–158. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  8. Sivaramakrishna, R., Shashidhar, N.S.: Hu’s Moment Invariant: How invariant are they under skew and perspective transformations? In: Conference on Communications, Power and Computing WESCANEX97 Proceedings, Winnipeg, MB, May 22-23, 1997, pp. 292–295 (1997)

    Google Scholar 

  9. Palaniappan, R., Raveendran, P., Omatu, S.: New Invariant Moments for Non-Uniformly Scaled Images. Pattern Analysis & Applications 3, 78–87 (2000)

    Article  Google Scholar 

  10. Shamsuddin, S.M., Darus, M., Sulaiman, M.N.: Invarianceness of Higher Order Centralised Scaled-Invariants on Unconstrained Handwritten Digits. International Journal of Inst. Maths. & Comp. Sciences (Comp. Sc. Ser.), INDIA 12(1), 1–9 (2001)

    Google Scholar 

  11. Ding, M., Chang, J., Peng, J.: Research on Moment Invariants Algorithm. Journal of Data Acquisition & Processing 7(2), 1–9 (1992)

    Google Scholar 

  12. Lv, H., Zhou, J.: Research on Discrete Moment Invariance Algorithm. Journal of Data Acquisition & Processing 8(2), 151–155 (1993)

    Google Scholar 

  13. Chen, C.-C.: Improved moment invariants for shape discrimination. Pattern Recognition 26(5), 683–686 (1993)

    Article  Google Scholar 

  14. Yinan, S., Weijun, L., Yuechao, W.: United Moment Invariant for Shape Discrimantion IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, China, Oktober 2003, pp. 88–93 (2003)

    Google Scholar 

  15. Raveendran, P., Omatu, S., Chew, P.S.: A new technique to derive invariant features for unequally scaled images. In: Systems, Man, and Cybernetics. IEEE International Conference, October 12-15, 1997. Computational Cybernetics and Simulation, vol. 4, pp. 3158–3163 (1997)

    Google Scholar 

  16. Srihari, S.N., Huang, C., Srinivasan, H., Shah, V.A.: Biometric and Forensic Aspects of Digital Document Processing. In: Chaudhuri, B.B. (ed.) Digital Document Processing, Springer, Heidelberg (2006)

    Google Scholar 

  17. Tapiador, M., Sigüenza, J.A.: Writer Identification Method Based on Forensic Knowledge. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, Springer, Heidelberg (2004)

    Google Scholar 

  18. Yu, K., Wang, Y., Tan, T.: Writer Identification Using Dynamic Features. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 512–518. Springer, Heidelberg (2004)

    Google Scholar 

  19. Zhu, Y., Tan, T., Wang, Y.: Biometric Personal Identification Based on Handwriting. In: Pattern Recognition. Proceedings. 15th International Conference, September 3-7, 2000, vol. 2, pp. 797–800 (2000)

    Google Scholar 

  20. Schlapbach, A., Bunke, H.: Off-line Handwriting Identification Using HMM Based Recognizers. In: Proc. 17th Int. Conf. on Pattern Recognition, Cambridge, August 23-26, 2004, pp. 654–658 (2004)

    Google Scholar 

  21. Bensefia, A., Nosary, A., Paquet, T., Heutte, L.: Writer identification by writer’s invariants. In: Frontiers in Handwriting Recognition. Proceedings. Eighth International Workshop, August 6-8, 2002, pp. 274–279 (2002)

    Google Scholar 

  22. Shen, C., Ruan, X.-G., Mao, T.-L.: Writer identification using Gabor wavelet. In: Intelligent Control and Automation. Proceedings of the 4th World Congress, June 10-14, 2002, vol. 3, pp. 2061–2064 (2002)

    Google Scholar 

  23. Srihari, S.N., Cha, S.-H., Lee, S.: Establishing handwriting individuality using pattern recognition techniques. In: Document Analysis and Recognition. Proceedings. Sixth International Conference, September 10-13, 2001, pp. 1195–1204 (2001)

    Google Scholar 

  24. Said, H.E.S., Tan, T.N., Baker, K.D.: Writer identification based on handwriting. Pattern Recognition 33, 149–160 (2000)

    Article  Google Scholar 

  25. Bin, Z., Srihari, S.N.: Analysis of Handwriting Individuality Using Word Features Document Analysis and Recognition. In: Proceedings. Seventh International Conference, August 3-6, 2003, pp. 1142–1146 (2003)

    Google Scholar 

  26. Srihari, S.N., Cha, S.-H., Arora, H., Lee, S.: Individuality of Handwriting. Journal of Forensic Sciences 47(4), 1–17 (2002)

    Google Scholar 

  27. Bensefia, A., Paquet, T., Heutte, L.: A writer identification and verification system. Pattern Recognition Letters, Corrected Proof, available online May 23, 2005 (in press)

    Google Scholar 

  28. He, Z.Y., Tang, Y.Y.: Chinese handwriting-based writer identification by texture analysis. In: Machine Learning and Cybernetics. Proceedings of 2004 International Conference, August 26-29, 2004, vol. 6, pp. 3488–3491 (2004)

    Google Scholar 

  29. Zhang, D.S., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)

    Article  MATH  Google Scholar 

  30. Raveendran, P., Omatu, S.: A new technique to derive features for shift and unequally scaled images. In: Neural Networks, Proceedings. IEEE International Conference, November 27-December 1, 1995, vol. 4, pp. 2077–2080. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  31. Liu, C.-L., Dai, R.-W., Liu, Y.-J.: Extracting individual features from moments for Chinese writer identification. In: Document Analysis and Recognition. Proceedings of the Third International Conference, August 14-16, 1995, vol. 1, pp. 438–441 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muda, A.K., Shamsuddin, S.M., Darus, M. (2007). Embedded Scale United Moment Invariant for Identification of Handwriting Individuality. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74472-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74472-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74468-9

  • Online ISBN: 978-3-540-74472-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics