Skip to main content

On the Use of Incomplete LU Decomposition as a Preconditioning Technique for Density Fitting in Electronic Structure Computations

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4705))

Included in the following conference series:

  • 1773 Accesses

Abstract

Incomplete factorization preconditioners combined with Krylov subspace accelerators are currently among the most effective methods for iteratively solving large systems of linear equations. In this paper we consider the use of a dual threshold incomplete LU factorization (ILUT) preconditioner for the iterative solution of the linear equation systems encountered when performing electronic structure calculations that involve density fitting. Two questions are addressed, how the overall performance of the ILUT method varies as a function of the accuracy of the preconditioning matrix, and whether it is possible to make approximations to the original matrix on which the LU decomposition is based and still obtain a good preconditioner. With respect to overall performance both computational and memory storage requirements are considered, while in terms of approximations both those based on numerical and physical arguments are considered. The results indicate that under the right circumstances the ILUT method is superior to fully direct approaches such as singular value decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14, 1–59 (2007)

    Article  Google Scholar 

  2. Benzi, M.: Preconditioning Techniques for Large Linear Systems: A survey. J. Compu. Phys. 182, 418–477 (2002)

    Article  MATH  Google Scholar 

  3. Saad, Y.: ILUT: a dual threshold incomplete LU preconditioner. Numer. Linear Algebra Appl. 1, 387–402 (1994)

    Article  MATH  Google Scholar 

  4. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MATH  Google Scholar 

  5. Ten-no, S., Iwata, S.: Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions. Chem. Phys. Lett. 240, 578–584 (1995)

    Article  Google Scholar 

  6. Kendall, R.A., Früchtl, H.A.: The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development. Theoret. Chem. Acc. 97, 158–163 (1997)

    Google Scholar 

  7. Früchtl, H.A., Kendall, R.A., Harrison, R.J., Dyall, K.G.: An implementation of RI-SCF on parallel computers. Int. J. Quantum Chem. 64, 63–69 (1997)

    Article  Google Scholar 

  8. Weigend, F.: A fully direct RI-HF algorithm: Implementation, optimized auxiliary basis sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys. 4, 4285–4291 (2002)

    Article  Google Scholar 

  9. Polly, R., Werner, H.J., Manby, F.R., Knowles, P.J.: Fast Hartree-Fock theory using local density fitting approximations. Mol. Phys. 104, 2311–2321 (2004)

    Article  Google Scholar 

  10. Ten-no, S., Iwata, S.: Multiconfiguration self-consistent field procedure employing linear combination of atomic-electron distributions. J. Chem. Phys. 105, 3604–3611 (1996)

    Article  Google Scholar 

  11. Feyereisen, M.W., Fitzgerald, G., Komornicki, A.: Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem. Phys. Lett. 208, 359–363 (1993)

    Article  Google Scholar 

  12. Bernholdt, D.E., Harrison, R.J.: Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers. Chem. Phys. Lett. 250, 477–484 (1996)

    Article  Google Scholar 

  13. Weigend, F., Häser, M., Patzelt, H., Ahlrichs, R.: RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998)

    Article  Google Scholar 

  14. Weigend, F., Köhn, A., Hättig, C.: Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 116, 3175–3183 (2002)

    Article  Google Scholar 

  15. Werner, H.J., Manby, F.R., Knowles, P.J.: Fast linear scaling second order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J. Chem. Phys. 118, 8149–8160 (2003)

    Article  Google Scholar 

  16. Hättig, C., Weigend, F.: CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys. 113, 5154–5161 (2000)

    Article  Google Scholar 

  17. Hättig, C.: Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple- basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 7, 59–66 (2005)

    Article  Google Scholar 

  18. Rendell, A.P., Lee, T.J.: Coupled-cluster theory employing approximate integrals: An approach to avoid the input/output and storage bottlenecks. J. Chem. Phys. 101, 400–408 (1994)

    Article  Google Scholar 

  19. Schütz, M., Manby, F.R.: Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals. Phys. Chem. Chem. Phys. 5, 3349–3358 (2003)

    Google Scholar 

  20. Manby, F.R.: Density fitting in second-order linear-R12 Møller-Plesset perturbation theory. J. Chem. Phys. 119, 4607–4613 (2003)

    Article  Google Scholar 

  21. Ten-no, S., Manby, F.R.: Density fitting for the decomposition of three-electron integrals in explicitly correlated electronic structure theory. J. Chem. Phys. 119, 5358–5363 (2003)

    Article  Google Scholar 

  22. Klopper, W.: A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r12 perturbation theory. J. Chem. Phys. 120, 10890–10895 (2004)

    Article  Google Scholar 

  23. Golub, G.H., van der Vorst, H.A.: Closer to the solution: iterative linear solvers. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis, pp. 63–92. Clarendon Press, Oxford (1997)

    Google Scholar 

  24. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, New York, NY (1996)

    MATH  Google Scholar 

  25. SLATEC Common Mathematical Library, Version 4.1 (1993), http://www.netlib.org/slatec/

  26. SPARSKIT, A basic tool-kit for sparse matrix computations (Version 2), http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

  27. Whitten, J.L.: Coulombic potential energy integrals and approximations. J. Chem. Phys. 58, 4496–4501 (1973)

    Article  Google Scholar 

  28. Dunlap, B.I., Connoly, J.W.D., Sabin, J.R.: On first-row diatomic molecules and local density models. J. Chem. Phys. 71, 4993–4999 (1979)

    Article  Google Scholar 

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.J., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02, Gaussian, Inc. Wallingford CT (2004)

    Google Scholar 

  30. Yang, R., Rendell, A. P., Frisch, M. J.: Automatically Generated Coulomb-Fitting Basis Sets: Design and Accuracy for Systems Containing H to Ne. J. Chem. Phys. (2007) (Submitted)

    Google Scholar 

  31. Saad, Y., Zhang, J., BILUM,: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems. Society for Industrial and Applied Mathematics 20, 2103–2121 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, R., Rendell, A.P., Frisch, M.J. (2007). On the Use of Incomplete LU Decomposition as a Preconditioning Technique for Density Fitting in Electronic Structure Computations. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74472-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74472-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74468-9

  • Online ISBN: 978-3-540-74472-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics