Skip to main content

A Finite First-Order Theory of Classes

  • Conference paper
Types for Proofs and Programs (TYPES 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4502))

Included in the following conference series:

Abstract

We expose a formalism that allows the expression of any theory with one or more axiom schemes using a finite number of axioms. These axioms have the property of being easily orientable into rewrite rules. This allows us to give finite first-order axiomatizations of arithmetic and real fields theory, and a presentation of arithmetic in deduction modulo that has a finite number of rewrite rules. Overall, this formalization relies on a weak calculus of explicit substitutions to provide a simple and finite framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Neumann, J.: Eine Axiomatisierung der Mengenlehre. Journal für die reine und angewandte Mathematik 154, 219–240 (1925)

    Article  Google Scholar 

  2. Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory. In: Annals of Mathematics Studies, vol. 3, Princeton University Press, Princeton (1940)

    Google Scholar 

  3. Bernays, P.: Axiomatic Set Theory. Dover Publications (1958)

    Google Scholar 

  4. Mendelson, E.: Introduction to mathematical logic, 4th edn. Chapman & Hall, Sydney (1997)

    MATH  Google Scholar 

  5. Vaillant, S.: A finite first-order presentation of set theory. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 316–330. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Kirchner, F.: Fellowship: who needs a manual anyway? (2005)

    Google Scholar 

  7. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

    Google Scholar 

  8. Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ: An intentional first-order expression of higher-order logic. Mathematical Structures in Computer Science 11(1), 21–45 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hardin, T., Maranget, L., Pagano, B.: Functional back-ends within the lambda-sigma calculus. In: ICFP, pp. 25–33. ACM Press, New York (1996)

    Google Scholar 

  10. Dowek, G., Miquel, A.: Cut elimination for Zermelo’s set theory. Submitted to RTA 2006 (2006)

    Google Scholar 

  11. Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)

    Google Scholar 

  12. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lelong-Ferrand, J., Arnaudies, J.M.: Cours de Mathématiques. Tome 2 : Analyse. Dunod (1972)

    Google Scholar 

  14. Bourbaki, N.: Éléments de mathématique – Théorie des ensembles. vol. 1 à 4. Masson, Paris (1968)

    Google Scholar 

  15. Megill, N.: A finitely axiomatized formalization of predicate calculus with equality. Notre Dame Journal of Formal Logic 36(3), 435–453 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Belinfante, J.: Computer proofs in Gödel’s class theory with equational definitions for composite and cross. Journal of Automated Reasoning 22(2), 311–339 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L.: Set theory in first-order logic: Clauses for Gödel’s axioms. Journal of Automated Reasoning 2(3), 287–327 (1986)

    Article  MATH  Google Scholar 

  18. Quaife, A.: Automated deduction in von Neumann-Bernays-Gödel set theory. Journal of Automated Reasoning 8(1), 91–147 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thorsten Altenkirch Conor McBride

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirchner, F. (2007). A Finite First-Order Theory of Classes. In: Altenkirch, T., McBride, C. (eds) Types for Proofs and Programs. TYPES 2006. Lecture Notes in Computer Science, vol 4502. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74464-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74464-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74463-4

  • Online ISBN: 978-3-540-74464-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics