Advertisement

Uncover Low Degree Vertices and Minimise the Mess: Independent Sets in Random Regular Graphs

  • William Duckworth
  • Michele Zito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

We present algorithmic lower bounds on the size s d of the largest independent sets of vertices in random d-regular graphs, for each fixed d ≥ 3. For instance, for d = 3 we prove that, for graphs on n vertices, s d  ≥ 0.43475 n with probability approaching one as n tends to infinity.

Keywords

Random Graph Minimum Degree Random Regular Graph Small Positive Real Number Mathematical Science Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Applied Mathematics 135(1-3), 3–16 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Assiyatun, H.: Large Subgraphs of Regular Graphs. PhD thesis, Department of Mathematics and Statistics - The University of Melbourne (2002)Google Scholar
  3. 3.
    Assiyatun, H., Wormald, N.: 3-star factors in random d-regular graphs. European Journal of Combinatorics 27(8), 1249–1262 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Assiyatun, H.: Maximum induced matchings of random regular graphs. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS, vol. 3330, pp. 44–57. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the Association for Computing Machinery 41(1), 153–180 (1994)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Berman, P., Fujito, T.: On approximation properties of the independent set problem for low degree graphs. Theory of Computing Systems 32(2), 115–132 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bollobás, B., Erdős, P.: Cliques in random graphs. Mathematical Proceedings of the Cambridge Philosophical Society 80, 419–427 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Z.-Z.: Approximation algorithms for independent sets in map graphs. Journal of Algorithms 41(1), 20–40 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures and Algorithms 10, 5–42 (1997)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Frieze, A.M.: On the independence number of random graphs. Discrete Mathematics 81(2), 171–175 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Frieze, A.M., Łuczak, T.: On the independence and chromatic number of random regular graphs. Journal of Combinatorial Theory B 54, 123–132 (1992)CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computer and Intractability, a Guide to the Theory of NP-Completeness. Freeman and Company (1979)Google Scholar
  13. 13.
    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph. SIAM Journal on Computing 1(2), 180–187 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)zbMATHGoogle Scholar
  15. 15.
    Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation scheme for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms 26, 238–274 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. John Wiley and Sons, Chichester (2000)zbMATHGoogle Scholar
  18. 18.
    McKay, B.D.: Independent sets in regular graphs of high girth. Ars Combinatoria 23A, 179–185 (1987)MathSciNetGoogle Scholar
  19. 19.
    Wormald, N.C.: Differential equations for random processes and random graphs. Annals of Applied Probability 5, 1217–1235 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wormald, N.C.: Analysis of greedy algorithms on graphs with bounded degrees. Discrete Mathematics 273, 235–260 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • William Duckworth
    • 1
  • Michele Zito
    • 2
  1. 1.Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200Australia
  2. 2.Department of Computer Science, University of Liverpool, Liverpool L69 3BXUK

Personalised recommendations