Advertisement

An Improved Claw Finding Algorithm Using Quantum Walk

  • Seiichiro Tani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

The claw finding problem has been studied in terms of query complexity as one of the problems closely connected to cryptography. For given two functions, f and g, as an oracle which have domains of size N and M (N ≤ M), respectively, and the same range, the goal of the problem is to find x and y such that f(x) = g(y). This paper describes a quantum-walk-based algorithm that solves this problem; it improves the previous upper bounds. Our algorithm can be generalized to find a claw of k functions for any constant integer k > 1, where the domains of the functions may have different size.

Keywords

Quantum computing query complexity oracle computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proc. 45th IEEE FOCS, pp. 22–31. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  3. 3.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation, Quantum Computation and Quantum Information: A Millennium Volume. AMS Contem. Math. 305, 53–74 (2002)Google Scholar
  4. 4.
    Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. In: Brouwer, A.E., Cohen, A.M., Neumaier, A. (eds.) A series of Modern Surveys in Mathematics, Springer, Heidelberg (1989)Google Scholar
  6. 6.
    Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum algorithms for element distinctness. In: Proc. 16th IEEE Conference on Computational Complexity, pp. 131–137. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  7. 7.
    Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum algorithms for element distinctness. SIAM J. Comput. 34(6), 1324–1330 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proc. 17th ACM/SIAM SODA, pp. 880–889 (2006)Google Scholar
  9. 9.
    Childs, A.M., Eisenberg, J.M.: Quantum algorithms for subset finding. Quantum Information and Computation 5(7), 593–604 (2005)zbMATHGoogle Scholar
  10. 10.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of 28th ACM STOC, pp. 212–219. ACM Press, New York (1996)Google Scholar
  11. 11.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Iwama, K., Kawachi, A.: A new quantum claw-finding algorithm for three functions. New Generation Computing 21(4), 319–327 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proc. 16th ACM/SIAM SODA, pp. 1109–1117 (2005)Google Scholar
  14. 14.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proc. 45th IEEE FOCS, pp. 32–41. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Seiichiro Tani
    • 1
    • 2
  1. 1.Quantum Computation and Information Project, ERATO-SORST, JST 
  2. 2.NTT Communication Science Laboratories, NTT Corporation 

Personalised recommendations