Advertisement

State Complexity of Basic Operations on Suffix-Free Regular Languages

  • Yo-Sub Han
  • Kai Salomaa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

We investigate the state complexity of basic operations for suffix-free regular languages. The state complexity of an operation for regular languages is the number of states that are necessary and sufficient in the worst-case for the minimal deterministic finite-state automaton that accepts the language obtained from the operation. We establish the precise state complexity of catenation, Kleene star, reversal and the Boolean operations for suffix-free regular languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Inc., London (1985)zbMATHGoogle Scholar
  2. 2.
    Brzozowski, J.: A survey of regular expressions and their applications. IEEE Transactions on Electronic Computers 11, 324–335 (1962)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Domaratzki, M.: State complexity of proportional removals. Journal of Automata, Languages and Combinatorics 7(4), 455–468 (2002)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Technical Report Technical Report 2007-534, Queen’s University (2007), http://www.cs.queensu.ca/TechReports/Reports/2007-534.pdf
  8. 8.
    Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite languages. In: Proceedings of DLT 2007. LNCS, vol. 4588, pp. 217–228 (2007)Google Scholar
  9. 9.
    Han, Y.-S., Salomaa, K., Wood, D.: State complexity of prefix-free regular languages. In: Proceedings of DCFS 2006, pp. 165–176 (2006) (Full version is submitted for publication)Google Scholar
  10. 10.
    Han, Y.-S., Wood, D.: The generalization of generalized automata: Expression automata. International Journal of Foundations of Computer Science 16(3), 499–510 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 162–172. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. International Journal of Foundations of Computer Science 14(6), 1087–1102 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading, MA (1979)zbMATHGoogle Scholar
  14. 14.
    Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Proceedings of DCFS 2005, pp. 170–181 (2005)Google Scholar
  15. 15.
    Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation of regular languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language, Grammar. Handbook of Formal Languages, vol. 1, pp. 511–607. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Leiss, E.L.: Succint representation of regular languages by boolean automata. Theoretical Computer Science 13, 323–330 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nicaud, C.: Average state complexity of operations on unary automata. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. International Journal of Foundations of Computer Science 13(1), 145–159 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320(2-3), 315–329 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York, NY (1987)zbMATHGoogle Scholar
  22. 22.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language, Grammar. Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Yu, S.: State complexity of regular languages. Journal of Automata, Languages and Combinatorics 6(2), 221–234 (2001)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yo-Sub Han
    • 1
  • Kai Salomaa
    • 2
  1. 1.Intelligence and Interaction Research Center, Korea Institute of Science and Technology, P.O.BOX 131, Cheongryang, SeoulKorea
  2. 2.School of Computing, Queen’s University, Kingston, Ontario K7L 3N6Canada

Personalised recommendations