Advertisement

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms

  • Elias Koutsoupias
  • Angelina Vidali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

We give an improved lower bound for the approximation ratio of truthful mechanisms for the unrelated machines scheduling problem. The mechanism design version of the problem which was proposed and studied in a seminal paper of Nisan and Ronen is at the core of the emerging area of Algorithmic Game Theory. The new lower bound 1 + φ ≈ 2.618 is a step towards the final resolution of this important problem.

Keywords

Schedule Problem Approximation Ratio Monotonicity Property Combinatorial Auction Revelation Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish related machines. In: 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS), pp. 69–82 (2005)Google Scholar
  2. 2.
    Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD thesis, Cornell University (January 2004)Google Scholar
  3. 3.
    Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 205–214. ACM Press, New York (2003)Google Scholar
  4. 4.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: 42nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 482–491 (2001)Google Scholar
  5. 5.
    Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In: Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), pp. 241–247 (2005)Google Scholar
  6. 6.
    Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial auctions. In: Proceedings of the 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 72–87 (2003)Google Scholar
  7. 7.
    Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 39–48. ACM Press, New York (2005)Google Scholar
  8. 8.
    Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1163–1169. ACM Press, New York (2007)Google Scholar
  9. 9.
    Clarke, E.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971)CrossRefGoogle Scholar
  10. 10.
    Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial auctions with complement-free bidders. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 610–618. ACM Press, New York (2005)Google Scholar
  11. 11.
    Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combinatorial auctions. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 644–652. ACM Press, New York (2006)Google Scholar
  12. 12.
    Christodoulou, E.K.G., Kovacs, A.: Mechanism design for fractional scheduling on unrelated machines. In: ICALP 2007 (to appear, 2007)Google Scholar
  13. 13.
    Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gui, H., Müller, R., Vohra, R.V.: Dominant strategy mechanisms with multidimensional types. In: Computing and Markets (2005)Google Scholar
  15. 15.
    Hochbaum, D.S.: Approximation algorithms for NP-hard problems. PWS Publishing Co. Boston, MA, USA (1996)Google Scholar
  16. 16.
    Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23(2), 317–327 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kevin, R.: The characterization of implementable choice rules. Aggregation and Revelation of Preferences, 321–348 (1979)Google Scholar
  18. 18.
    Kovacs, A.: Fast monotone 3-approximation algorithm for scheduling related machines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–627. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: 44th Symposium on Foundations of Computer Science (FOCS), pp. 574–583 (2003)Google Scholar
  20. 20.
    Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling via cycle-monotonicity. In: Proceedings 8th ACM Conference on Electronic Commerce (EC), ACM Press, New York (2007)Google Scholar
  21. 21.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46(1), 259–271 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1143–1152. ACM Press, New York (2007)Google Scholar
  23. 23.
    Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC), pp. 129–140. ACM Press, New York (1999)CrossRefGoogle Scholar
  24. 24.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings 6th ACM Conference on Electronic Commerce (EC), pp. 286–293. ACM Press, New York (2005)CrossRefGoogle Scholar
  26. 26.
    Vickrey, W.: Counterspeculations, auctions and competitive sealed tenders. Journal of Finance 16, 8–37 (1961)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Elias Koutsoupias
    • 1
  • Angelina Vidali
    • 1
  1. 1.Department of Informatics, University of Athens 

Personalised recommendations