Advertisement

Hierarchies of Infinite Structures Generated by Pushdown Automata and Recursion Schemes

  • C. -H. L. Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

Higher-order recursion schemes and higher-order pushdown automata are closely related methods for generating infinite hierarchies of infinite structures. Subsuming well-known classes of models of computation, these rich hierarchies (of word languages, trees, and graphs respectively) have excellent model-checking properties. In this extended abstract, we survey recent expressivity and decidability results about these infinite structures.

Keywords

Computation Tree Recursion Scheme Game Semantic Word Language Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, N.D., Muchnick, S.S.: Complexity of finite memory programs with recursion. Journal of the Association for Computing Machinery 25, 312–321 (1978)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37, 51–75 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet mathematics Doklady 15, 1170–1174 (1974)zbMATHGoogle Scholar
  5. 5.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 12, 38–43 (1976)Google Scholar
  6. 6.
    Aho, A.: Indexed grammars - an extension of context-free grammars. J. ACM 15, 647–671 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Damm, W.: The IO- and OI-hierarchy. Theoretical Computer Science 20, 95–207 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-hierarchy. Information and Control 71, 1–32 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Deciding monadic theories of hyperalgebraic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society 141, 1–35 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Courcelle, B.: The monadic second-order logic of graphs IX: machines and their behaviours. Theoretical Computer Science 151, 125–162 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    de Miranda, J.: Structures generated by higher-order grammars and the safety constraint. PhD thesis, University of Oxford (2006)Google Scholar
  14. 14.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I. Models, observables and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal game model. Information and Computation 163, 285–408 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006), pp. 81–90. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  19. 19.
    Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars and panic automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Aehlig, K., Miranda, J.G.d., Ong, C.H.L.: The monadic second order theory of trees given by arbitrary level two recursion schemes is decidable. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Aehlig, K.: A finite semantics for simply-typed lambda terms for infinite runs of automata. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 104–118. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Hague, M., Murawski, A.S., Ong, C.H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. Technical report, Oxford University Computing Laboratory, p. 56 (Preprint, 2007), downloable from users.comlab.ox.ac.uk/luke.ong/publications/cpda-long.pdf
  23. 23.
    Aehlig, K., de Miranda, J.G., Ong, C.H.L.: Safety is not a restriction at level 2 for string languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 490–501. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Blum, W.: A tool for constructing structures generated by higher-order recursion schemes and collapsible pushdown automata (2007), web.comlab.ox.ac.uk/oucl/work/william.blum/
  25. 25.
    Walukiewicz, I.: Pushdown processes: games and model-checking. Information and Computation 157, 234–263 (2001)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Nivat, M.: On the interpretation of recursive polyadic program schemes. Symp. Math. XV, 255–281 (1975)MathSciNetGoogle Scholar
  28. 28.
    Murawski, A.S., Ong, C.H.L., Walukiewicz, I.: Idealized Algol with ground recursion and DPDA equivalence. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 917–929. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. -H. L. Ong
    • 1
  1. 1.Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QDEngland

Personalised recommendations