Packing and Squeezing Subgraphs into Planar Graphs

  • Fabrizio Frati
  • Markus Geyer
  • Michael Kaufmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)


We consider the following problem: Given a set S of graphs, each of n vertices, construct an n-vertex planar graph G containing all the graphs of S as subgraphs. We distinguish the variant in which any two graphs of S are required to have disjoint edges in G (known as ’packing’) from the variant in which distinct graphs of S can share edges in G (called ’squeezing’). About the packing variant we show that an arbitrary tree and an arbitrary spider tree can always be packed in a planar graph, improving in this way partial results recently given on this problem. Concerning the squeezing variant, we consider some important classes of graphs, like paths, trees, outerplanar graphs, etc. and establish positive and negative results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information Processing Letters 51(4), 207–211 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms & Applications 3(3), 1–27 (1999)MathSciNetGoogle Scholar
  4. 4.
    Frati, F.: Embedding graphs simultaneously with fixed edges. Graph Drawing, 108–113 (2006)Google Scholar
  5. 5.
    Frati, F., Geyer, M., Kaufmann, M.: Packing and squeezing subgraphs into planar graphs. Tech. Report RT-DIA-114-2007, Dept. of Computer Science and Automation, University of Roma Tre (2007)Google Scholar
  6. 6.
    García, A., Hernando, C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar graphs. J. Graph Theory, 172–181 (2002)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  8. 8.
    Geyer, M., Kaufmann, M., Vrtó, I.: Two trees which are self-intersecting when drawn simultaneously. In: Graph Drawing, pp. 201–210 (2005)Google Scholar
  9. 9.
    Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In: STOC, pp. 504–512 (2005)Google Scholar
  10. 10.
    Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.: A note on packing two trees into \(K\sb{N}\). Ars Combin. 11, 149–153 (1981)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Maheo, M., Saclé, J.-F., Woźniak, M.: Edge-disjoint placement of three trees. European J. Combin. 17(6), 543–563 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey. Graphs and Combinatorics 14(1), 59–73 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Oda, Y., Ota, K.: Tight planar packings of two trees. In: European Workshop on Computational Geometry, pp. 215–216 (2006)Google Scholar
  14. 14.
    Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fabrizio Frati
    • 1
  • Markus Geyer
    • 2
  • Michael Kaufmann
    • 2
  1. 1.Dipartimento di Informatica e Automazione – Università Roma TreItaly
  2. 2.Wilhelm-Schickard-Institut für Informatik – Universität TübingenGermany

Personalised recommendations