Efficient Provably-Secure Hierarchical Key Assignment Schemes

  • Alfredo De Santis
  • Anna Lisa Ferrara
  • Barbara Masucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)


A hierarchical key assignment scheme is a method to assign some private information and encryption keys to a set of classes in a partially ordered hierarchy, in such a way that the private information of a higher class can be used to derive the keys of all classes lower down in the hierarchy.

In this paper we design and analyze hierarchical key assignment schemes which are provably-secure and support dynamic updates to the hierarchy with local changes to the public information and without requiring any private information to be re-distributed.

  • We first show an encryption based construction which is provably secure with respect to key indistinguishability, requires a single computational assumption and improves on previous proposals.

  • Then, we show how to reduce key derivation time at the expense of an increment of the amount of public information, by improving a previous result.

  • Finally, we show a construction using as a building block a public-key broadcast encryption scheme. In particular, one of our constructions provides constant private information and public information linear in the number of classes in the hierarchy.


Private Information Encryption Scheme Public Information Broadcast Encryption Static Adversary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akl, S.G., Taylor, P.D.: Cryptographic Solution to a Problem of Access Control in a Hierarchy. ACM Trans. on Comput. Syst. 1(3), 239–248 (1983)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Schieber, B.: Optimal Preprocessing for Answering On-line Product Queries, Tech. Rep, TR 71/87, Inst. of Comput. Sci., Tel-Aviv Univ. (1987)Google Scholar
  3. 3.
    Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and Efficient Key Management for Access Hierarchies. In: Proc. of ACM CCS 2005, pp. 190–201(2005)Google Scholar
  4. 4.
    Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and Efficient Key Management for Access Hierarchies, CERIAS Tech. Rep. TR 2006-09, Purdue Univ. (2006)Google Scholar
  5. 5.
    Atallah, M.J., Blanton, M., Frikken, K.B.: Key Management for Non-Tree Access Hierarchies. In: Proc. of ACM SACMAT 2006, pp. 11–18 (2006), Full version avail at
  6. 6.
    Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-Secure Time-Bound Hierarchical Key Assignment Schemes. In: Proc. of ACM CCS 2006, pp. 288–297. Full version avail. as Rep. 2006/225 at the IACR Cryptology ePrint Archive (2006)Google Scholar
  7. 7.
    Bodlaender, H.L., Tel, G., Santoro, N.: Trade-offs in Non-reversing Diameter. Nordic J. on Comput. 1, 111–134 (1994)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Chazelle, B.: Computing on a Free Tree via Complexity-Preserving Mappings. Algorithmica 2, 337–361 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Crampton, J., Martin, K., Wild, P.: On Key Assignment for Hierarchical Access Control. In: Proc. of IEEE CSFW, pp. 98–111 (2006)Google Scholar
  11. 11.
    De Santis, A., Ferrara, A.L., Masucci, B.: Efficient Provably-Secure Hierarchical Key Assignment Schemes, avail. as Rep. 2006/479 at the IACR Cryptology ePrint Archive (2006)Google Scholar
  12. 12.
    Dushnik, B., Miller, E.W.: Partially Ordered Sets. American Journal of Mathematics 63, 600–610 (1941)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Comp. and System Sci. 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hesse, W.: Directed Graphs Requiring Large Number of Shortcuts. In: Proc. of ACM-SIAM SODA 2003, pp. 665–669 (2003)Google Scholar
  15. 15.
    Thorup, M.: On Shortcutting Digraphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 205–211. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Thorup, M.: Shortcutting Planar Digraphs. Combinatorics, Probability & Comput. 4, 287–315 (1995)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Yao, A.C.: Space-Time Tradeoff for Answering Range Queries. In: Proc. of ACM STOC 1982, pp. 128–136 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alfredo De Santis
    • 1
  • Anna Lisa Ferrara
    • 1
  • Barbara Masucci
    • 1
  1. 1.Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84084 Fisciano (SA)Italy

Personalised recommendations