Advertisement

Towards a Rice Theorem on Traces of Cellular Automata

  • Julien Cervelle
  • Pierre Guillon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

The trace subshift of a cellular automaton is the subshift of all possible columns that may appear in a space-time diagram. We prove the undecidability of a rather large class of problems over trace subshifts of cellular automata.

Keywords

Discrete-time dynamical systems cellular automata symbolic dynamics formal languages computability decidability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilman, R.H.: Classes of linear automata. Erg. Th. & Dyn. Sys. 7, 105–118 (1988)MathSciNetGoogle Scholar
  2. 2.
    Hurley, M.: Attractors in cellular automata. Erg. Th. & Dyn. Sys. 10, 131–140 (1990)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Mazoyer, J., Rapaport, I.: Inducing an order on cellular automata by a grouping operation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 116–127. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Erg. Th. & Dyn. Sys. 17, 417–433 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. on Computing 21(3), 571–586 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kari, J.: Rice’s theorem for the limit sets of cellular automata. Th. Comp. Sci. 127(2), 229–254 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity classification for cellular automata. In: Morvan, M., Rémila, E. (eds.) DMTCS 2003. DMTCS Proc., Disc. Math. and Th. Comp. Sci, vol. AB, pp. 117–128 (2003)Google Scholar
  8. 8.
    Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Cervelle, J., Durand, B.: Tilings: recursivity and regularity. Th. Comp. Sci. 310(1-3), 469–477 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cervelle, J., Formenti, E., Guillon, P.: Sofic trace of a cellular automaton. In: CiE, Siena, Italy, LNCS (June 2007)Google Scholar
  11. 11.
    Kůrka, P.: Topological and symbolic dynamics. In: Société Mathématique de France (2003)Google Scholar
  12. 12.
    Gilman, R.H.: Notes on cellular automata (Manuscript 1988)Google Scholar
  13. 13.
    di Lena, P.: Decidable and Computational properties of Cellular Automata. PhD thesis, Università di Bologna e Padova (December 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Julien Cervelle
    • 1
  • Pierre Guillon
    • 1
  1. 1.Institut Gaspard Monge, Université de Marne la Vallée, 77454 Marne la Vallée Cedex 2France

Personalised recommendations