Towards a Rice Theorem on Traces of Cellular Automata

  • Julien Cervelle
  • Pierre Guillon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)


The trace subshift of a cellular automaton is the subshift of all possible columns that may appear in a space-time diagram. We prove the undecidability of a rather large class of problems over trace subshifts of cellular automata.


Discrete-time dynamical systems cellular automata symbolic dynamics formal languages computability decidability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilman, R.H.: Classes of linear automata. Erg. Th. & Dyn. Sys. 7, 105–118 (1988)MathSciNetGoogle Scholar
  2. 2.
    Hurley, M.: Attractors in cellular automata. Erg. Th. & Dyn. Sys. 10, 131–140 (1990)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Mazoyer, J., Rapaport, I.: Inducing an order on cellular automata by a grouping operation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 116–127. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Erg. Th. & Dyn. Sys. 17, 417–433 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. on Computing 21(3), 571–586 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kari, J.: Rice’s theorem for the limit sets of cellular automata. Th. Comp. Sci. 127(2), 229–254 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity classification for cellular automata. In: Morvan, M., Rémila, E. (eds.) DMTCS 2003. DMTCS Proc., Disc. Math. and Th. Comp. Sci, vol. AB, pp. 117–128 (2003)Google Scholar
  8. 8.
    Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Cervelle, J., Durand, B.: Tilings: recursivity and regularity. Th. Comp. Sci. 310(1-3), 469–477 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cervelle, J., Formenti, E., Guillon, P.: Sofic trace of a cellular automaton. In: CiE, Siena, Italy, LNCS (June 2007)Google Scholar
  11. 11.
    Kůrka, P.: Topological and symbolic dynamics. In: Société Mathématique de France (2003)Google Scholar
  12. 12.
    Gilman, R.H.: Notes on cellular automata (Manuscript 1988)Google Scholar
  13. 13.
    di Lena, P.: Decidable and Computational properties of Cellular Automata. PhD thesis, Università di Bologna e Padova (December 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Julien Cervelle
    • 1
  • Pierre Guillon
    • 1
  1. 1.Institut Gaspard Monge, Université de Marne la Vallée, 77454 Marne la Vallée Cedex 2France

Personalised recommendations