The Maximum Solution Problem on Graphs

  • Peter Jonsson
  • Gustav Nordh
  • Johan Thapper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)


We study the complexity of the problem Max Sol which is a natural optimisation version of the graph homomorphism problem. Given a fixed target graph H with V(H) ⊆ ℕ, and a weight function w : V(G) →ℚ + , an instance of the problem is a graph G and the goal is to find a homomorphism f: GH which maximises ∑ v ∈ G f(v) ·w(v). Max Sol can be seen as a restriction of the Min Hom-problem [Gutin et al., Disc. App. Math., 154 (2006), pp. 881-889] and as a natural generalisation of Max Ones to larger domains. We present new tools with which we classify the complexity of Max Sol for irreflexive graphs with degree less than or equal to 2 as well as for small graphs (|V(H)| ≤ 4). We also study an extension of Max Sol where value lists and arbitrary weights are allowed; somewhat surprisingly, this problem is polynomial-time equivalent to Min Hom.


Constraint satisfaction homomorphisms computational complexity optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ageev, A.: On finding critical independent and vertex sets. SIAM J. Discrete Math. 7(2), 293–295 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint satisfaction. Artif. Intell. 170(11), 983–1016 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Combin. Th (B) 72, 236–250 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Feder, T., Hell, P., Huang, J.: List Homomorphisms and Circular Arc Graphs. Combinatorica 19, 487–505 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomorphisms. European J. Combin. (to appear)Google Scholar
  6. 6.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete digraphs. Discrete Applied Mathematics 154(6), 890–897 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Applied Mathematics 154(6), 881–889 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46, 313–327 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hell, P., Nešetřil, J.: The complexity of H-coloring. J. Combinatorial Theory B 48, 92–110 (1990)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press (2004)Google Scholar
  11. 11.
    Jeavons, P., Cohen, D., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Jonsson, P.: Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights. Theoretical Computer Science 244(1–2), 189–203 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jonsson, P., Nordh, G.: Generalised integer programming based on logically defined relations. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 549–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Roberts, F.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, London (1969)Google Scholar
  15. 15.
    Szendrei, Á. (ed.): Clones in Universal Algebra. Seminaires de Mathématiques Supérieures, vol. 99. University of Montreal (1986)Google Scholar
  16. 16.
    Vikas, N.: A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results. J. Comput. Syst. Sci. 71(4), 406–439 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhang, C.-Q.: Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math. 3(3), 431–438 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Peter Jonsson
    • 1
  • Gustav Nordh
    • 1
  • Johan Thapper
    • 1
  1. 1.Department of Computer and Information Science, Linköpings universitet, S-581 83 LinköpingSweden

Personalised recommendations