The early days of finite model theory saw a variety of results establishing that the model theory of the class of finite structures is not well-behaved. Recent work has shown that considering subclasses of the class of finite structures allows us to recover some good model-theoretic behaviour. This appears to be especially true of some classes that are known to be algorithmically well-behaved. We review some results in this area and explore the connection between logic and algorithms.


Model Theory Planar Graph Minimal Model Disjoint Union Preservation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. J. of Computer and System Sciences 49, 562–588 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions of conjunctive queries. Journal of the ACM 53, 208–237 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. of the 15th ACM Symp. on the Theory of Computing, pp. 171–183. ACM Press, New York (1983)Google Scholar
  6. 6.
    Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame structures. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 276–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  8. 8.
    Cai, J-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs ii: Infinite graphs of bounded width. Theory of Computing Systems 21, 187–221 (1989)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwan, J. (ed.) Handbook of Theoretical Computer Science, Formal Models and Sematics (B), vol. B, pp. 193–242. Elsevier, Amsterdam (1990)Google Scholar
  11. 11.
    Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. 22nd IEEE Symp. on Logic in Computer Science (2007)Google Scholar
  12. 12.
    Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model theory makes formulas large. In: ICALP 2007: Proc. 34th International Colloquium on Automata, Languages and Programming. LNCS, Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Dawar, A., Kreutzer, S., Grohe, M., Schweikardt, N.: Approximation schemes for first-order definable optimisation problems. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp. 411–420 (2006)Google Scholar
  14. 14.
    Dawar, A., Malod, G.: forthcomingGoogle Scholar
  15. 15.
    Dawar, A., Richerby, D.: The power of counting logics on restricted classes of finite structures. In: CSL 2007: Computer Science Logic. LNCS, Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  17. 17.
    Ebbinghaus, H-D., Flum, J.: Finite Model Theory. 2nd edn., Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)Google Scholar
  20. 20.
    Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31, 113–145 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Proceedings of the Herbrand Symposium Logic Colloquium 1981, pp. 105–135. North-Holland, Amsterdam (1982)Google Scholar
  23. 23.
    Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Grohe, M.: Fixed-point logics on planar graphs. In: Proc. 13th IEEE Annual Symp. Logic in Computer Science, pp. 6–15 (1998)Google Scholar
  25. 25.
    Grohe, M.: Isomorphism testing for embeddable graphs through definability. In: Proc. 32nd ACM Symp. Theory of Computing, pp. 63–72 (2000)Google Scholar
  26. 26.
    Grohe, M., Mariño, J.: Definability and descriptive complexity on databases of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, Springer, Heidelberg (1998)Google Scholar
  27. 27.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  28. 28.
    Immerman, N.: Relational queries computable in polynomial time. Information and Control 68, 86–104 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  30. 30.
    Immerman, N., Lander, E.S.: Describing graphs: A first-order approach to graph canonization. In: Selman, A. (ed.) Complexity Theory Retrospective, Springer, Heidelberg (1990)Google Scholar
  31. 31.
    Kolatis, P.G.: A tutorial on finite model theory. In: Proceedings of the Eighth Annual IEEE Symp. on Logic in Computer Science, LICS 1993, pp. 122–122 (1993)Google Scholar
  32. 32.
    Kreidler, M., Seese, D.: Monadic NP and graph minors. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) Computer Science Logic. LNCS, vol. 1584, pp. 126–141. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  33. 33.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  34. 34.
    Lindell, S.: An analysis of fixed-point queries on binary trees. Theoretical Computer Science 85(1), 75–95 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Livchak, A.: The relational model for process control. Automated Documentation and Mathematical Linguistics 4, 27–29 (1983)Google Scholar
  36. 36.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences 25, 42–65 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press (2001)Google Scholar
  38. 38.
    Rossman, B.: Existential positive types and preservation under homomorphisisms. In: 20th IEEE Symposium on Logic in Computer Science, pp. 467–476 (2005)Google Scholar
  39. 39.
    Seese, D.: Linear time computable problems and first-order descriptions. Math. Struct. in Comp. Science 6, 505–526 (1996)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Nešetřil, J., de Mendez, P.O.: The grad of a graph and classes with bounded expansion. International Colloquium on Graph Theory, 101–106 (2005)Google Scholar
  41. 41.
    Tait, W.W.: A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic 24, 15–16 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM Symp. on the Theory of Computing, pp. 137–146 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Anuj Dawar
    • 1
  1. 1.University of Cambridge Computer Laboratory, William Gates Building, J.J. Thomson Avenue, Cambridge, CB3 0FDUK

Personalised recommendations