Advertisement

Adapting Parallel Algorithms to the W-Stream Model, with Applications to Graph Problems

  • Camil Demetrescu
  • Bruno Escoffier
  • Gabriel Moruz
  • Andrea Ribichini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

In this paper we show how parallel algorithms can be turned into efficient streaming algorithms for several classical combinatorial problems in the W − Stream . In this model, at each pass one input stream is read and one output stream is written; streams are pipelined in such a way that the output stream produced at pass i is given as input stream at pass i + 1. Our techniques give new insights on developing streaming algorithms and yield optimal algorithms (up to polylog factors) for several classical problems in this model including sorting, connectivity, minimum spanning tree, biconnected components, and maximal independent set.

Keywords

Parallel Algorithm Minimum Span Tree Input Stream Output Stream Graph Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with a sorting primitive. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  2. 2.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Computer and System Sciences 58(1), 137–147 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Anderson, R., Miller, G.: A simple randomized parallel algorithm for list-ranking. Information Processing Letters 33(5), 269–273 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the 21st ACM Symposium on Principles of Database Systems (PODS 2002), pp. 1–16. ACM Press, New York (2002)Google Scholar
  5. 5.
    Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proc. 13th annual ACM-SIAM symposium on Discrete algorithms (SODA 2002), pp. 623–632. ACM Press, New York (2002)Google Scholar
  6. 6.
    Blelloch, G., Maggs, B.: Parallel algorithms. In: The Computer Science and Engineering Handbook, pp. 277–315 (1997)Google Scholar
  7. 7.
    Chiang, Y., Goodrich, M., Grove, E., Tamassia, R., Vemgroff, D., Vitter, J.: External-memory graph algorithms. In: Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pp. 139–149. ACM Press, New York (1995)Google Scholar
  8. 8.
    Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: Proc. 17th Annual ACM-SIAM Symposium of Discrete Algorithms (SODA 2006), pp. 714–723. ACM Press, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 207–216. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: Proceedings of the 16th ACM/SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 745–754 (2005)Google Scholar
  11. 11.
    Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L 1 difference algorithm for massive data streams. SIAM Journal on Computing 32(1), 131–151 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, small-space algorithms for approximate histogram maintenance. In: Proc. 34th ACM Symposium on Theory of Computing (STOC 2002), pp. 389–398. ACM Press, New York (2002)Google Scholar
  13. 13.
    Golab, L., Ozsu, M.: Data stream management issues: a survey. Technical report, School of Computer Science, University of Waterloo, TR CS-2003-08 (2003)Google Scholar
  14. 14.
    Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: “External Memory algorithms”. DIMACS series in Discrete Mathematics and Theoretical Computer Science 50, 107–118 (1999)MathSciNetGoogle Scholar
  15. 15.
    Jájá, J.: An introduction to parallel algorithms. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  16. 16.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambr. U. Press (1997)Google Scholar
  17. 17.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal of Computing 15(4), 1036–1053 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Munro, I., Paterson, M.: Selection and sorting with limited storage. Theoretical Computer Science 12, 315–323 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Muthukrishnan, S.: Data streams: algorithms and applications. Technical report (2003), Available at http://athos.rutgers.edu/~muthu/stream-1-1.ps
  20. 20.
    Reif, J.: Optimal parallel algorithms for integer sorting and graph connectivity. Technical Report TR 08-85, Aiken Comp. Lab, Harvard U., Cambridge (1985)Google Scholar
  21. 21.
    Ruhl, M.: Efficient Algorithms for New Computational Models. PhD thesis, Massauchussets Institute of Technology (September 2003)Google Scholar
  22. 22.
    Shiloach, Y., Vishkin, U.: An o(logn) Parallel Connectivity Algorithm. J. Algorithms 3(1), 57–67 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of network traffic. In: Proceedings USENIX Annual Technical Conference (1998)Google Scholar
  24. 24.
    Tarjan, R., Vishkin, U.: Finding biconnected components and computing tree functions in logarithmic parallel time. In: Proc. 25th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1984), pp. 12–20. IEEE Computer Society Press, Los Alamitos (1984)Google Scholar
  25. 25.
    Ullman, J., Yannakakis, M.: High-probability parallel transitive-closure algorithms. SIAM Journal on Computing 20(1), 100–125 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Camil Demetrescu
    • 1
  • Bruno Escoffier
    • 2
  • Gabriel Moruz
    • 3
  • Andrea Ribichini
    • 1
  1. 1.Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, RomeItaly
  2. 2.Lamsade, Université Paris DauphineFrance
  3. 3.MADALGO, BRICS, Department of Computer Science, University of AarhusDenmark

Personalised recommendations