The Complexity of Solitaire

  • Luc Longpré
  • Pierre McKenzie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)


Klondike is the well-known 52-card Solitaire game available on almost every computer. The problem of determining whether an n-card Klondike initial configuration can lead to a win is shown NP-complete. The problem remains NP-complete when only three suits are allowed instead of the usual four. When only two suits of opposite color are available, the problem is shown NL-hard. When the only two suits have the same color, two restrictions are shown in AC0 and in NL respectively. When a single suit is allowed, the problem drops in complexity down to AC0[3], that is, the problem is solvable by a family of constant depth unbounded fan-in {and, or, mod 3}-circuits. Other cases are studied: for example, “no King” variant with an arbitrary number of suits of the same color and with an empty “pile” is NL-complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Barrington, D., Chakraborty, T., Datta, S., Roy, S.: Grid Graph Reachability Problems. In: Proc. 21st Annual IEEE Conference on Computational Complexity, pp. 299–313 (2006)Google Scholar
  2. 2.
    Barrington, D., Immerman, N., Straubing, H.: On uniformity within NC 1. J. Computer and System Sciences 41(3), 274–306 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm for formula evaluation. SIAM J. Computing 21, 755–780 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Helmert, M.: Complexity results for standard benchmark domains in planning. Artificial Intelligence 143(2), 219–262 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gent, I., Jefferson, C., Lynce, I., Miguel, I., Nightingale, P., Smith, B., Tarim, A.: Search in the Patience Game “Black Hole”. In: AI Communications. pp. 1–15. IOS Press, Amsterdam, ISSN 0921-7126Google Scholar
  6. 6.
    Kaye, R.: Minesweeper is NP-complete. In: The Mathematical Intelligencer, vol. 22(2), pp. 9–15. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  8. 8.
    Parlett, D.: Solitaire: “Aces Up” and 399 Other Card Games, Pantheon (1979)Google Scholar
  9. 9.
    Parlett, D.: A History of Card Games. Oxford University Press, Oxford (1991)Google Scholar
  10. 10.
    Yan, X., Diaconis, P., Rusmevichientong, P., Van Roy, B.: Solitaire: Man versus Machine. In: Proc. Advances in Neural Information Processing Systems, NIPS, vol. 17 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luc Longpré
    • 1
  • Pierre McKenzie
    • 2
  1. 1.University of Texas at El Paso 
  2. 2.Université de Montréal 

Personalised recommendations