On Approximation of Bookmark Assignments

  • Yuichi Asahiro
  • Eiji Miyano
  • Toshihide Murata
  • Hirotaka Ono
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)


Consider a rooted directed acyclic graph G = (V, E) with root r, representing a collection V of web pages connected via a set E of hyperlinks. Each node v is associated with the probability that a user wants to access the node v. The access cost is defined as the expected number of steps required to reach a node from the root r. A bookmark is an additional shortcut from r to a node of G, which may reduce the access cost. The bookmark assignment problem is to find a set of bookmarks that achieves the greatest improvement in the access cost. For the problem, the paper presents a polynomial time approximation algorithm with factor (1 − 1/e), and shows that there exists no polynomial time approximation algorithm with a better constant factor than (1 − 1/e) unless \({\cal NP}\subseteq {\cal DTIME}(N^{O(\log\log N)})\), where N is the size of the inputs.


Approximation Algorithm Directed Acyclic Graph Approximation Ratio Short Path Problem Gain Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., Zadeck, F.K.: Incremental evaluation of computational circuits. In: Proc. SODA 1990, pp. 32–42 (1990)Google Scholar
  2. 2.
    Arora, S., Lund, C.: Hardness of Approximation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, pp. 399–446. PWS publishing company (1995)Google Scholar
  3. 3.
    Bose, P., Kranakis, E., Krizanc, D., Vergas Martin, M., Czyzowicz, J., Pelc, A., Gasieniec, J.: Strategies for hotlink assignments. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 23–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Vergas Martin, M.: Assigning bookmarks in perfect binary trees. Ars Combinatoria, vol. LXXXII (2007)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  6. 6.
    Fuhrmann, S., Krumke, S.O., Wirth, H.-C.: Multiple hotlink assignment. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 189–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. IPL 70(1), 39–45 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Langberg, M.: Approximation Algorithms for Maximization Problems arising in Graph Partitioning. M. Sc. thesis, Weizmann Institute of Science (1998)Google Scholar
  10. 10.
    Li, B., Deng, X., Golin, M.J., Sohraby, K.: On the optimal placement of web proxies in the Internet: Linear Topology. In: Proc. HPN 1998, pp. 485–495 (1998)Google Scholar
  11. 11.
    Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the optimal placement of web proxies in the Internet. In: Proc. INFOCOMM 1999, pp. 1282–1290 (1999)Google Scholar
  12. 12.
    Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: Maintaining a topological order under edge insertions. IPL 59(1), 53–58 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Matichin, R., Peleg, D.: Approximation algorithm for hotlink assignments in web directories. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 271–280. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Matichin, R., Peleg, D.: Approximation algorithm for hotlink assignment in the greedy model. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 233–244. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Petrank, E.: The hardness of approximation: gap location. Computational Complexity 4, 133–157 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Perkowitz, M., Etzioni, O.: Towards adaptive web sites: conceptual framework and case study. Computer Networks 31, 1245–1258 (1999)CrossRefGoogle Scholar
  18. 18.
    Pessoa, A.A., Laber, E.S., de Souza, C.: Efficient algorithms for the hotlink assignment problem: the worst case search. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 778–792. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Vergas Martin, M.: Enhancing Hyperlink Structure for Improving Web Performance. PhD thesis, School of Computer Science, Carleton University (2002)Google Scholar
  20. 20.
    Vohra, R.V., Hall, N.G.: A probabilistic analysis of the maximal covering location problem. Discrete Applied Mathmatics 43(2), 175–183 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yuichi Asahiro
    • 1
  • Eiji Miyano
    • 2
  • Toshihide Murata
    • 2
  • Hirotaka Ono
    • 3
  1. 1.Department of Social Information Systems, Kyushu Sangyo University, Fukuoka 813-8503Japan
  2. 2.Department of Systems Innovation and Informatics, Kyushu Institute of Technology, Fukuoka 820-8502Japan
  3. 3.Department of Computer Science and Communication Engineering, Kyushu University, Fukuoka 819-0395Japan

Personalised recommendations