Advertisement

New Approximability Results for 2-Dimensional Packing Problems

  • Klaus Jansen
  • Roberto Solis-Oba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

The strip packing problem is to pack a set of rectangles into a strip of fixed width and minimum length. We present asymptotic polynomial time approximation schemes for this problem without and with 90 o rotations. The additive constant in the approximation ratios of both algorithms is 1, improving on the additive term in the approximation ratios of the algorithm by Kenyon and Rémila (for the problem without rotations) and Jansen and van Stee (for the problem with rotations), both of which have a larger additive constant O(1/ε 2), ε> 0.

The algorithms were derived from the study of the rectangle packing problem: Given a set R of rectangles with positive profits, the goal is to find and pack a maximum profit subset of R into a unit size square bin [0,1] ×[0,1]. We present algorithms that for any value ε> 0 find a subset R′ ⊆ R of rectangles of total profit at least (1 − ε) OPT, where OPT is the profit of an optimum solution, and pack them (either without rotations or with 90 o rotations) into the augmented bin [0,1] ×[0,1 + ε].

Keywords

Packing Problem Total Width Polynomial Time Approximation Scheme Slot Assignment Strip Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, N., Sviridenko, M.: Two-dimensional bin packing with one dimensional resource augmentation. Discrete Optimization 4, 143–153 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing 9, 808–826 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+epsilon in linear time. Combinatorica 1(4), 349–355 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fishkin, A.V., Gerber, O., Jansen, K.: On weighted rectangle packing with large resources. In: Conference Theoretical Computer Science (TCS 2004), pp. 237–250 (2004)Google Scholar
  5. 5.
    Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectangles into a square. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 352–363. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Garey, M.R., D. S., Johnson.: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  7. 7.
    Harren, R.: Approximating the orthogonal knapsack problem for hypercubes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Jansen, K., van Stee, R.: On strip packing with rotations. In: ACM Symposium on Theory of Computing. STOC 2005, pp. 755–761 (2005)Google Scholar
  9. 9.
    Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: ACM-SIAM Symposium on Discrete Algorithms. In: SODA 2004, pp. 197–206 (2004)Google Scholar
  10. 10.
    Jansen, K., Zhang, G.: Maximizing the number of packed rectangles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 362–371. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Karmarkar, M., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: IEEE Symposium on Foundations of Computer Science. FOCS 1982, pp. 312–320 (1982)Google Scholar
  12. 12.
    Kenyon, C., Remila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research 25, 645–656 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lawler, E.: Fast approximation algorithms for knapsack problems. Mathematics of Operations Research 4, 339–356 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. Journal Parallel and Dist. Computing 10, 271–275 (1990)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Schiermeyer, I.: Reverse-fit: a 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Steinberg, A.: A strip-packing algorithm with absolute performance bound two. SIAM Journal on Computing 26, 401–409 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Klaus Jansen
    • 1
  • Roberto Solis-Oba
    • 2
  1. 1.Institut für Informatik, Universität zu Kiel, KielGermany
  2. 2.Department of Computer Science, University of Western Ontario, LondonCanada

Personalised recommendations