Skip to main content

Abstract

A clique-transversal set S of a graph G is a set of vertices of G such that S meets all cliques of G. The clique-transversal number, denoted τ c (G), is the minimum cardinality of a clique-transversal set in G. In this paper we present an upper bound and a lower bound on τ c (G) for cubic graphs, and characterize the extremal cubic graphs achieving the lower bound. In addition, we present a sharp upper bound on τ c (G) for claw-free cubic graphs.

This research was partially supported by The Hong Kong Polytechnic University under grant number G-YX69, the National Nature Science Foundation of China under grant 10571117, the ShuGuang Plan of Shanghai Education Development Foundation under grant 06SG42 and the Development Foundation of Shanghai Education Committee under grant 05AZ04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Andreae, T.: Vertex-sets that meet all maximal cliques of a graph, manusript (1986)

    Google Scholar 

  2. Andreae, T.: On the clique-transversal number of chordal graphs. Discrete Math. 191, 3–11 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andreae, T., Schughart, M., Tuza, Z.: Clique-transversal sets of line graphs and complements of line graphs. Discrete Math. 88, 11–20 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balachandhran, V., Nagavamsi, P., Pandu Ragan, C.: Clique transversal and clique independence on comparability graphs. Inform. Process. Lett. 58, 181–184 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier North Holland, New York (1986)

    Google Scholar 

  6. Chang, M.S., Chen, Y.H., Chang, G.J., Yan, J.H.: Algorithmic aspects of the generalized clique-transversal problem on chordal graphs. Discrete Appl. Math. 66, 189–203 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, G.J., Farber, M., Tuza, Z.: Algorithmic aspects of neighbourhood numbers. SIAM J. Discrete Math. 6, 24–29 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlhaus, E., Mannuel, P.D., Miller, M.: Maximum h-colourable subgraph problem in balanced graphs. Inform. Process. Lett. 65, 301–303 (1998)

    Article  MathSciNet  Google Scholar 

  9. Durán, G., Lin, M.C., Szwarcfiter, J.L.: On clique-transversals and clique-independent sets. Annals of Operations Research 116, 71–77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdős, P., Gallai, T., Tuza, T.: Covering the cliques of a graph with vertices. Discrete Math. 108, 279–289 (1992)

    Article  MathSciNet  Google Scholar 

  11. Guruswami, V., Pangu Rangan, C.: Algorithmic aspects of clique-transversal and clique-independent sets. Discrete Appl. Math. 100, 183–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  13. Lai, F., Chang, G.J.: An upper bound for the transversal numbers of 4-uniform hypergraphs. J. Combin. Theory Ser. B 50, 129–133 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lee, C.M., Chang, M.S.: Distance-hereditary graphs are clique-perfect. Discrete Appl. Math. 154, 525–536 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lonc, Z., Rival, I.: Chains, antichains and fibers. J. Combin. Theory Ser. A 44, 207–228 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Prisner, E.: Graphs with few cliques. In: Alavi, Y., Schwenk, A. (eds.) Graph Theory, Combinatorics and Applications. Proceedings of the 7th Quadrennial International Conference on the Theory and Applications, pp. 945–956. Wiley, Chichester, New York (1995)

    Google Scholar 

  17. Tuza, Z.: Covering all cliques of a graph. Discrete Math. 86, 117–126 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Xu, G.J., Shan, E.F., Kang, L.Y., Cheng, T.C.E.: The algorithmic complexity of the minus clique-transversal problem. Appl. Math. Comput. 189, 1410–1418 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Chen Mike Paterson Guochuan Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, Z., Shan, E., Cheng, T.C.E. (2007). Clique-Transversal Sets in Cubic Graphs. In: Chen, B., Paterson, M., Zhang, G. (eds) Combinatorics, Algorithms, Probabilistic and Experimental Methodologies. ESCAPE 2007. Lecture Notes in Computer Science, vol 4614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74450-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74450-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74449-8

  • Online ISBN: 978-3-540-74450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics