Skip to main content

Emitters for Fine Electron Probes

  • Chapter
Vacuum Technology
  • 2666 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

W FE Emitter

  1. A. V. Crewe, D. N. Eggenberger, J. Wall, and L. M. Welter, “Electron gun using a field-emission source”, Rev. Sci. Instrum. 39 (4), pp. 576–583 (1968).

    Article  ADS  Google Scholar 

  2. A. V. Crewe, J. Wall, and L. M. Welter, “A high-resolution scanning transmission electron microscope”, J. Appl. Phys. 39 (12), pp. 5861–5868 (1968).

    Article  ADS  Google Scholar 

  3. A. V. Crewe, M. Isaacson, and D. Johnson, “A simple scanning electron microscope”, Rev. Sci. Instrum. 40 (2), pp. 241–246 (1969).

    Article  ADS  Google Scholar 

  4. S. Tamaki, T. Inoue, E. Sugata, and H. W. Kim, “Remolding of <310>-tungsten tip in field-ion microscope”, Japan. J. Appl. Phys.15 (2), pp. 265–272 (1976).

    Article  ADS  Google Scholar 

  5. S. Yamamoto, S. Fukuhara, H. Okano, and N. Saito, “Field emission current instability in the “ever-decreasing” region, Japan. J. Appl. Phys.. 15 (9), pp. 1643–1646 (1976).

    Article  ADS  Google Scholar 

  6. D. J. Swann and K. C. A. Smith, “Lifetime and noise characteristics of tungsten field emitters”, Scanning Electron Microscopy/1973/I, pp. 42–48.

    Google Scholar 

  7. H. Todokoro, N. Saitou, and S. Yamamoto, “Role of ion bombardment in field emission current instability”, Japan. J. Appl. Phys.. 21 (10), pp. 1513–1516 (1982).

    Article  ADS  Google Scholar 

  8. L. H. Veneklasen and B. M. Siegel, “Oxygen-processed field emission source”, J. Appl. Phys. 43 (4), pp. 1600–1604 (1972).

    Article  ADS  Google Scholar 

  9. N. Tamura, “Basic study of TF emission”, Scanning Electron Microscopy/1979/I, pp. 31–38.

    Google Scholar 

  10. W. P. Dyke, J. K. Trolan, E. E. Martin, and J. P. Barbour, “The field emission initiated vacuum arc. I. Experiments on arc initiation”, Phys. Rev. 91 (5), pp. 1043–1054 (1953).

    Article  ADS  Google Scholar 

  11. W. W. Dolan, W. P. Dyke, and J. K. Trolan, “The field emission initiated vacuum arc. II. The resistively heated emitter”, Phys. Rev. 91 (5), pp. 1054–1057 (1953).

    Article  ADS  Google Scholar 

  12. W. P. Dyke, J. K. Trolan, W. W. Dolan, and G. Barnes, “The field emitter: fabrication, electron microscopy, and electric field calculations”, J. Appl. Phys. 24 (5), pp. 570–576 (1953).

    Article  ADS  Google Scholar 

  13. W. P. Dyke, F. M. Charbonnier, R. W. Strayer, R. L. Floyd, J. P. Barbour, and J. K. Trolan, “Electrical stability and life of the heated field emission cathode”, J. Appl. Phys. 31 (5), pp. 790–805 (1960).

    Article  ADS  Google Scholar 

  14. S. Nakamura and T. Kuroda, “Remolding of field emission cathode”, Oyo Buturi(Journal of the Japan Society of Applied Physics) 42 (10), pp. 975–982 (1973) (in Japanese).

    Google Scholar 

  15. F. A. Nichols and W. W. Mullins, “Morphological changes of a surface of revolution due to capillarity-induced surface diffusion”, J. Appl. Phys. 36 (6), pp. 1826–1835 (1965).

    Article  ADS  Google Scholar 

  16. E. Sugata and D. Mun, “Morphological changes by heating of tungsten cathode for field emission microscope”, Oyo Buturi (Journal of the Japan Society of Applied Physics) 38 (11), pp. 1024–1031 (1969) (in Japanese).

    Google Scholar 

  17. M. Pichaud, A. Müller, and M. Drechsler, “Temperature distribution along metal tips (for field emission microscopy and the study of surface phenomena)”, Surface Science 26, pp. 14–20 (1971).

    Article  ADS  Google Scholar 

  18. H. Morikawa, K. Matsusaka, H. Kurata, Y. Yoshino, “The build-up process of (111) pole of a tungsten tip and the shape change of a tip cap”, Shinku J. Vac. Soc. Japan 44 (1), pp. 36–41 (2001) (in Japanese).

    Google Scholar 

  19. H. Morikawa and K. Goto, “Reproducible sharp-pointed tip preparation for field ion microscopy by controlled ac polishing”, Rev. Sci. Instrum. 59 (10), pp. 2195–2197 (1988).

    Article  ADS  Google Scholar 

  20. A. J. Emons and K. L. Hagemans, “Use of a field-electron emitter as a pressure indicator in ultrahigh vacuum”, J. Vac. Sci. Technol. 9 (1), pp. 112–116 (1972).

    Article  ADS  Google Scholar 

  21. L. de Chernatony and J. Yarwood, “Problems in the production and measurement of very high vacuum, especially in applications, and a new approach to measurement based on the use of field emission”, Vacuum 29 (3), pp. 125–128 (1979).

    Article  Google Scholar 

  22. L. de Chernatony, “Problems in the production and measurement of atomically clean surface environments and their confirmation based on the use of field emission”, Vacuum 29 (11/12), pp. 389–403 (1979).

    Article  Google Scholar 

  23. S. Yamamoto, K. Susa, and U. Kawabe, “Work functions of binary compounds”, J. Chem. Phys. 60 (10), pp. 4076–4080 (1974).

    Article  ADS  Google Scholar 

  24. Y. Yamamoto and T. Miyokawa, ”Emission characteristics of a conical field emission gun”, J. Vac. Sci. Technol. B 16 (5), pp. 2871–2875 (1998).

    Article  Google Scholar 

  25. J. F. Hainfeld, “Understanding and using field emission sources”, Scanning Electron Microscopy/1977/I, pp. 591–604.

    Google Scholar 

ZrO/W Emitter

  1. L. W. Swanson and N. A. Martin, “Field electron cathode stability studies: Zirconium/tungsten thermal-field cathode”, J. Appl. Phys. 46 (5), pp. 2029–2050 (1975).

    Article  ADS  Google Scholar 

  2. L. W. Swanson, “Comparative study of the zirconiated and built-up W thermal-field cathode”, J. Vac. Sci. Technol. 12 (6), pp. 1228–1233 (1975).

    Article  ADS  Google Scholar 

  3. J. E. Wolfe, “Operational experience with zirconiated T-F emitters”, J. Vac. Sci. Technol. 16 (6), pp. 1704–1708 (1979).

    Article  ADS  Google Scholar 

  4. L. R. Danielson, “The Zr-O-W <100>emitter and coadsorption of zirconium and carbon monoxide on W <100>”, J. Appl. Phys. 52 (11), pp. 6769–6776 (1981).

    Article  ADS  Google Scholar 

  5. N. K. Kang, D. Tuggle, and L. W. Swanson, “A numerical analysis of the electric field and trajectories with and without the effect of space charge for a field electron source”, Optik 63 (4), pp. 313–331 (1983).

    Google Scholar 

  6. R. Speidel, P. Brauchle, B. Kramer und U. Schwab, “Die Zr-O-W-Feldemissionskathode im Niedertemperaturbetrieb”, Optik 71 (4), pp. 167–172 (1985).

    Google Scholar 

  7. H. S. Kim, E. Kratschmer, M. L. Yu, M. G. R. Thomson, and T. H. P. Chang, “Evaluation of Zr/O/W Schottky emitters for microcolumn applications”, J. Vac. Sci. Technol. B 12 (6), pp. 3413–3417 (1994).

    Article  Google Scholar 

  8. H. S. Kim, M. L. Yu, M. G. R. Thomson, E. Kratschmer, and T. H. P. Chang, “Performance of Zr/O/W Schottky emitters at reduced temperatures”, J. Vac. Sci. Technol. B 15 (6), pp. 2284–2288 (1997).

    Article  Google Scholar 

LaB6 Emitter

  1. J. M. Lafferty, “Boride cathodes”, J. Appl. Phys. 22 (3), pp. 299–309 (1951).

    Article  ADS  Google Scholar 

  2. S. Nakagawa and T. Yanaka, “A highly stable electron probe obtained with LaB6 cathode electron gun”, Scanning Electron Microscopy/1975/I, pp. 20–26.

    Google Scholar 

  3. C. K. Crawford, “Mounting methods and operating characteristics for LaB6 cathodes”, Scanning Electron Microscopy/1979/I, pp. 19–30.

    Google Scholar 

  4. P. B. Sewell, “High brightness thermionic electron guns for electron microscopes”, Scanning Electron Microscopy/1980/I, pp. 11–24.

    Google Scholar 

  5. M. Futamoto, M. Nakazawa, K. Usami, S. Hosoki, and U. Kawabe, “Thermionic emission properties of a single-crystal LaB6 cathode”, J. Appl. Phys. 51 (7), pp. 3869–3876 (1980).

    Article  ADS  Google Scholar 

  6. F. J. Hohn, “Development and use of high brightness lanthanum hexaboride electron guns”, Scanning Electron Microscopy/1985/IV, pp. 1327–1338.

    Google Scholar 

Other FE Emitters

  1. I. Ishizawa, S. Aoki, C. Oshima, and S. Otani, “Field emission properties of surface-processed TiC <110>field emitter”, Shinku J. Vac. Soc. Japan 29 (12), pp. 578–584 (1986) (in Japanese).

    Google Scholar 

  2. Y. Ishizawa, S. Aoki, C. Oshima, and S. Otani, “Design and operation of extremely high vacuum field emission gun”, Shinku (J. Vac. Soc. Japan) 29 (11), pp. 544–548 (1986) (in Japanese).

    Google Scholar 

  3. Y. Endo, I. Honjo, and A. Ito, “Application of micro field emitters to a miniature electron beam column”, Shinku (J. Vac. Soc. Japan) 43 (2), pp. 112–118 (2000) (in Japanese).

    Google Scholar 

  4. H. Adachi, “Approach to a stable field emission electron source”, Scanning Electron Microscopy/1985/II, pp. 473–487.

    Google Scholar 

  5. T. Ichinokawa and Y. Kamiya, “Electron source”, Electron Microscopy 19 (2), pp. 71–76 (1984) (in Japanese).

    Google Scholar 

  6. H. Seiler, “Secondary electron emission in the scanning electron microscope”, J. Appl. Phys. 54 (11), pp. R2–R18 (1983).

    Article  ADS  Google Scholar 

Other Articles

  1. J. B. McGinn, L. W. Swanson, N. A. Martin, M. A. Gesley, M. A. McCord, R. Viswanathan, F. J. Hohn, A. D. Wilson, R. Naumann, and M. Utlaut, “100 kV Schottky electron gun”, J. Vac. Sci. Technol. B96), pp. 2925–2928 (1991).

    Article  Google Scholar 

  2. R. Shimizu, T. Shinike, T. Tanaka, C. Oshima, S. Kawai, H. Hiraoka, and H. Hagiwara, “Brightness of single crystal LaB6 cathodes of <100>and <110>orientations”, Scanning Electron Microscopy/1979/I, pp. 11–18.

    Google Scholar 

  3. M. Futamoto, M. Nakazawa, K. Usami, S. Hosoki, and U. Kawabe, “Thermionic emission properties of a single-crystal LaB6 cathode”, J. Appl. Phys. 51 (7), pp. 3869–3876 (1980).

    Article  ADS  Google Scholar 

  4. M. Yamabe, Y. Furukawa, and T. Inagaki, “Electron emission from <100>LaB6 cathodes with large cone angles and flat tips”, J. Vac. Sci. Technol. A 2 (3), pp. 1361–1364 (1984).

    Article  ADS  Google Scholar 

  5. H. Adachi, “Approach to a stable field emission electron source”, Shinku (J. Vac. Soc. Japan) 29 (1), pp. 13–25 (1986) (in Japanese).

    Google Scholar 

Other

  1. W. I. Karain, L. V. Knight, D. D. Allred, and A. Reyes-Mena, “Emitted current instability from silicon field emission emitters due to sputtering by residual gas ions”, J. Vac. Sci. Technol. A 12 (4), pp. 2581–2585 (1994).

    Article  ADS  Google Scholar 

  2. S. Albin, W. Fu, A. Varghese, A. C. Lavarias, and G. R. Myneni, “Diamond coated silicon field emitter array”, J. Vac. Sci. Technol. A 17 (4), pp. 2104–2108 (1999).

    Article  ADS  Google Scholar 

  3. D. Chen, W. Y. Cheung, S. P. Wong, Y. M. Fung, J. B. Xu, I. H. Wilson, and R. W. M. Kwok, “Field emission characteristics of SiC capped Si tip array by ion beam synthesis”, J. Vac. Sci. Technol. A 17 (4), pp. 2109–2112 (1999).

    Article  ADS  Google Scholar 

  4. D. Temple, W. D. Palmer, L. N. Yadon, J. E. Mancusi, D. Vellenga, and G. E. McGuire, “Silicon field emitter cathodes: Fabrication, performance, and applications”, J. Vac. Sci. Technol. A 16 (3), pp. 1980–1990 (1998).

    Article  ADS  Google Scholar 

  5. C. Lea, “Field emission from carbon fibres”, J. Phys. D: Appl. Phys, 6, pp. 1105–1114 (1973).

    Article  ADS  Google Scholar 

  6. N. de Jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, “High brightness electron beam from a multi-walled carbon nanotube”, Nature 420, pp. 393–395 (2002).

    Article  ADS  Google Scholar 

  7. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “Physical properties of thin-film field emission cathodes with molybdenum cones”, J. Appl. Phys. 47 (12), pp. 5248–5263 (1976).

    Article  ADS  Google Scholar 

  8. J. Itoh and H. Hiroshima, “Fabrication and theoretical study of micro-size vertical vacuum triodes”, 2nd Int. Conf. on Vac. Microelectron., Bath, 1989, pp. 231–234 (Inst. Phys. Conf. Ser. No 99: Section 7).

    Google Scholar 

  9. K. K. Chin and R. B. Marcus, “Field emitter tips for vacuum microelectronic devices”, J. Vac. Sci. Technol. A 8 (4), pp. 3586–3590 (1990).

    Article  ADS  Google Scholar 

  10. T. R. Albrecht, S. Akamine, M. J. Zdeblick, and C. F. Quate, “Microfabrication of integrated scanning tunneling microscope”, J. Vac. Sci. Technol. A 8 (1), pp. 317–318 (1990).

    Article  ADS  Google Scholar 

  11. W. N. Carr, H. J. Wang, K. K. Chin, and R. B. Marcus, “Vacuum microtriode characteristics”, J. Vac. Sci. Technol. A 8 (4), pp. 3581–3585 (1990).

    Article  ADS  Google Scholar 

  12. A. D. Feinerman, D. A. Crewe, D. C. Perng, S. E. Shoaf, and A. V. Crewe, “Sub-centimeter micromachined electron microscope”, J. Vac. Sci. Technol. A 10 (4), pp. 611–616 (1992).

    Article  ADS  Google Scholar 

  13. T. Durakiewicz and S. Halas, “Thermal relaxation of hot filaments”, J. Vac. Sci. Technol. A 17 (3), pp. 1071–1074 (1999).

    Article  ADS  Google Scholar 

  14. S. Yamamoto, “Recent development of cathodes used for cathode ray tubes”, Shinku (J. Vac. Soc. Japan) 40 (5), pp. 423–430 (1997) (in English).

    Google Scholar 

  15. K. Yokoo, J. Ikeda, K. Tahara, Y. Abe, and H. Mimura, “Field emission characteristics of semiconductor cathodes”, Shinku (J. Vac. Soc. Japan) 41 (4), pp. 428–433 (1998) (in Japanese).

    Google Scholar 

  16. S. Kanemaru and J. Itoh, “Fabrication of integrated field emitters”, Shinku (J. Vac. Soc. Japan) 41 (4), pp. 434–439 (1998) (in Japanese).

    Google Scholar 

  17. U. Staufer, L. P. Muray, D. P. Kern, and T. H. P. Chang, “Investigation of emitter tips for scanning tunneling microscope-based microprobe systems”, J. Vac. Sci. Technol. B 9 (6), pp. 2962–2966 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimura, N. (2008). Emitters for Fine Electron Probes. In: Vacuum Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74433-7_8

Download citation

Publish with us

Policies and ethics