Skip to main content

Adhesion, Invasion, Integrins, and Beyond

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The importance of the tumor microenvironment for tumor development and progression becomes increasingly evident. A precise and concerted interplay between both the cellular components, i.e., the cells and their mutations, and the acellular components, i.e., the tumor microenvironment, drives tumor growth and spread beyond physiological boundaries as well as promotes cellular resistance to conventional radiotherapy and chemotherapy. One of the prominent microenvironmental modulators of the sensitivity of tumor tissue and tumor-associated normal tissue to therapy is the interaction of cells with the extracellular matrix. Besides serving as structural support for the cells in a tissue, the extracellular matrix participates in the regulation of essential cell functions such as survival, proliferation, differentiation, adhesion, and migration. In this chapter, the overarching function of the tumor-related extracellular matrix is depicted and summarized with regard to the molecular, pathophysiological, and radiobiological aspects associated with tumor biology, radiation, and chemoresistance in the context of cell adhesion molecule families, their interactions with other types of cell surface receptors, and the downstream network of signal transducers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson A, Sunshine JL, Rutishauser U (1991) NCAM polysialic acid can regulate both cell–cell and cell-substrate interactions. J Cell Biol 114:143–153

    PubMed  CAS  Google Scholar 

  • Adamia S, Maxwell CA, Pilarski LM (2005) Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord 5:3–14

    PubMed  CAS  Google Scholar 

  • Alavi A, Stupack DG (2007) Cell survival in a three-dimensional matrix. Methods Enzymol 426:85–101

    PubMed  CAS  Google Scholar 

  • Albelda SM, Mette SA, Elder DE et al (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764

    PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    PubMed  CAS  Google Scholar 

  • Ardelt W (1964) [Elastin, elastase, elastolysis.] (In Polish) Postepy Biochem 10:245–264

    PubMed  CAS  Google Scholar 

  • Barret C, Roy C, Montcourrier P et al (2000) Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151:1067–1080

    PubMed  CAS  Google Scholar 

  • Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554

    PubMed  CAS  Google Scholar 

  • Biancone L, Araki M, Araki K et al (1996) Redirection of tumor metastasis by expression of E-selectin in vivo. J Exp Med 183:581–587

    PubMed  CAS  Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    PubMed  CAS  Google Scholar 

  • Blaschke RJ, Howlett AR, Desprez PY et al (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535–556

    PubMed  CAS  Google Scholar 

  • Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–43

    PubMed  CAS  Google Scholar 

  • Board RE, Valle JW (2007) Metastatic colorectal cancer: current systemic treatment options. Drugs 67:1851–1867

    PubMed  CAS  Google Scholar 

  • Bolender DL, Seliger WG, Markwald RR et al (1981) Structural analysis of extracellular matrix prior to the migration of cephalic neural crest cells. Scan Electron Microsc (Pt 2):285–296

    Google Scholar 

  • Bompard G, Martin M, Roy C et al (2003) Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J Cell Sci 116 (Pt 12):2519–2530

    PubMed  CAS  Google Scholar 

  • Borsig L, Wong R, Hynes RO et al (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 99:2193–2198

    PubMed  CAS  Google Scholar 

  • Boudeau J, Miranda-Saavedra D, Barton GJ et al (2006) Emerging roles of pseudokinases. Trends Cell Biol 16:443–452

    PubMed  CAS  Google Scholar 

  • Brakebusch C, Fassler R (2003) The integrin-actin connection, an eternal love affair. EMBO J 22:2324–2333

    PubMed  CAS  Google Scholar 

  • Braun A, Bordoy R, Stanchi F et al (2003) PINCH2 is a new five LIM domain protein, homologous to PINCH and localized to focal adhesions. Exp Cell Res 284:239–250

    PubMed  CAS  Google Scholar 

  • Brodt P, Fallavollita L, Bresalier RS et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71:612–619

    PubMed  CAS  Google Scholar 

  • Brooks PC, Stromblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693

    PubMed  CAS  Google Scholar 

  • Broussard JA, Webb DJ, Kaverina I (2008) Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 20:85–90

    PubMed  CAS  Google Scholar 

  • Burridge K, Nuckolls G, Otey C et al (1990) Actin-membrane interaction in focal adhesions. Cell Differ Dev 32:337–342

    PubMed  CAS  Google Scholar 

  • Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15:954–963

    PubMed  CAS  Google Scholar 

  • Calderwood DA, Tuckwell DS, Humphries MJ (1995) Specificity of integrin I-domain-ligand binding. Biochem Soc Trans 23:504S

    PubMed  CAS  Google Scholar 

  • Calderwood DA, Tuckwell DS, Eble J et al (1997) The integrin alpha1 A-domain is a ligand binding site for collagens and laminin. J Biol Chem 272:12311–12317

    PubMed  CAS  Google Scholar 

  • Caron-Lormier G, Berry H (2005) Amplification and oscillations in the FAK/Src kinase system during integrin signaling. J Theor Biol 232:235–248

    PubMed  CAS  Google Scholar 

  • Carver LA, Schnitzer JE (2003) Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3:571–581

    PubMed  CAS  Google Scholar 

  • Ceccarelli DF, Song HK, Poy F et al (2006) Crystal structure of the FERM domain of focal adhesion kinase. J Biol Chem 281:252–259

    PubMed  CAS  Google Scholar 

  • Chan AO (2006) E-cadherin in gastric cancer. World J Gastroenterol 12:199–203

    PubMed  CAS  Google Scholar 

  • Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43

    PubMed  CAS  Google Scholar 

  • Chapman HA, Wei Y (2001) Protease crosstalk with integrins: the urokinase receptor paradigm. Thromb Haemost 86:124–129

    PubMed  CAS  Google Scholar 

  • Chishti AH, Kim AC, Marfatia SM et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282

    PubMed  CAS  Google Scholar 

  • Chung J, Kim TH (2008) Integrin-dependent translational control: Implication in cancer progression. Microsc Res Tech 71:380–386

    PubMed  CAS  Google Scholar 

  • Chung LW, Li W, Gleave ME et al (1992) Human prostate cancer model: roles of growth factors and extracellular matrices. J Cell Biochem Suppl 16H:99–105

    PubMed  CAS  Google Scholar 

  • Cochran AJ, Ohsie SJ, Binder SW (2008) Pathobiology of the sentinel node. Curr Opin Oncol 20:190–195

    PubMed  Google Scholar 

  • Cordes N (2004) Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity. Cancer Res 64:5683–56892

    PubMed  CAS  Google Scholar 

  • Cordes N, Meineke V (2003) Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro. Strahlenther Onkol 179:337–344

    PubMed  Google Scholar 

  • Cordes N, Park CC (2007) beta1 integrin as a molecular therapeutic target. Int J Radiat Biol 83 (11–12):753–760

    PubMed  CAS  Google Scholar 

  • Cordes N, van Beuningen D (2003) Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3beta (GSK-3beta) in vitro. Br J Cancer 88:1470–1479

    PubMed  CAS  Google Scholar 

  • Cordes N, Hansmeier B, Beinke C et al (2003) Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines. Br J Cancer 89:2122–2132

    PubMed  CAS  Google Scholar 

  • Cordes N, Seidler J, Durzok R et al (2006) beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25:1378–1390

    PubMed  CAS  Google Scholar 

  • Cordes N, Frick S, Brunner TB et al (2007) Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene 26:6851–6862

    PubMed  CAS  Google Scholar 

  • Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    PubMed  CAS  Google Scholar 

  • Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17:499–508

    PubMed  CAS  Google Scholar 

  • Crnic I, Strittmatter K, Cavallaro U et al (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64:8630–8638

    PubMed  CAS  Google Scholar 

  • Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    PubMed  CAS  Google Scholar 

  • Czirok A, Zamir EA, Filla MB et al (2006) Extracellular matrix macroassembly dynamics in early vertebrate embryos. Curr Top Dev Biol 73:237–258

    PubMed  CAS  Google Scholar 

  • Dalton WS (2003) The tumor microenvironment: focus on myeloma. Cancer Treat Rev 29 Suppl 1:11–19

    PubMed  CAS  Google Scholar 

  • Damiano JS (2002) Integrins as novel drug targets for overcoming innate drug resistance. Curr Cancer Drug Targets 2:37–43

    PubMed  CAS  Google Scholar 

  • Damiano JS, Cress AE, Hazlehurst LA et al (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93:1658–1667

    PubMed  CAS  Google Scholar 

  • Danen EH (2005) Integrins: regulators of tissue function and cancer progression. Curr Pharm Des 11:881–891

    PubMed  CAS  Google Scholar 

  • Delcommenne M, Tan C, Gray V et al (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95:11211–1126

    PubMed  CAS  Google Scholar 

  • Diaz-Montero CM, McIntyre BW (2003) Acquisition of anoikis resistance in human osteosarcoma cells. Eur J Cancer 39:2395–2402

    PubMed  CAS  Google Scholar 

  • Dougherty GW, Chopp T, Qi SM et al (2005) The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions. Exp Cell Res 306:168–179

    PubMed  CAS  Google Scholar 

  • Durand RE (1994) The influence of microenvironmental factors during cancer therapy. In Vivo 8:691–702

    PubMed  CAS  Google Scholar 

  • Duxbury MS, Ito H, Benoit E et al (2005) RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clin Cancer Res 11:3433–3438

    PubMed  CAS  Google Scholar 

  • Edwards LA, Thiessen B, Dragowska WH et al (2005) Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene 24:3596–35605

    PubMed  CAS  Google Scholar 

  • Eke I, Sandfort V, Mischkus A et al (2006) Antiproliferative effects of EGFR tyrosine kinase inhibition and radiation-induced genotoxic injury are attenuated by adhesion to fibronectin. Radiother Oncol 80:178–184

    PubMed  CAS  Google Scholar 

  • Eke I, Sandfort V, Storch K et al (2007) Pharmacological inhibition of EGFR tyrosine kinase affects ILK-mediated cellular radiosensitization in vitro. Int J Radiat Biol 83:793–802

    PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440 (7088):1222–1226

    PubMed  CAS  Google Scholar 

  • Estrugo D, Fischer A, Hess F et al (2007) Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS ONE 2:e269

    PubMed  Google Scholar 

  • Evans EA, Calderwood DA (2007) Forces and bond dynamics in cell adhesion. Science 316:1148–1153

    PubMed  CAS  Google Scholar 

  • Evans RD, Jones J, Taylor C et al (2004) Sequence variation in the I-like domain of the beta1 integrin subunit in human oral squamous cell carcinomas. Cancer Lett 213:189–194

    PubMed  CAS  Google Scholar 

  • Fielding CJ, Fielding PE (2003) Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim Biophys Acta 1610:219–228

    PubMed  CAS  Google Scholar 

  • Fine JD, Griffith RD (1985) A specific defect in glycosylation of epidermal cell membranes. Definition in skin from patients with epidermolysis bullosa simplex. Arch Dermatol 121:1292–1296

    PubMed  CAS  Google Scholar 

  • Fogar P, Basso D, Pasquali C et al (1997) Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res 17:1227–1230

    PubMed  CAS  Google Scholar 

  • Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    PubMed  CAS  Google Scholar 

  • Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57:41–64

    PubMed  CAS  Google Scholar 

  • Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648

    PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    PubMed  CAS  Google Scholar 

  • Girault JA, Labesse G, Mornon JP et al (1999) The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci 24:54–57

    PubMed  CAS  Google Scholar 

  • Gluer S, Wunder MA, Schelp C et al (1998) Polysialylated neural cell adhesion molecule serum levels in normal children. Pediatr Res 44:915–919

    PubMed  CAS  Google Scholar 

  • Godsel LM, Hobbs RP, Green KJ (2008) Intermediate filament assembly: dynamics to disease. Trends Cell Biol 18:28–37

    PubMed  CAS  Google Scholar 

  • Gomez DE, Alonso DF, Yoshiji H et al (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Greenburg G, Vlodavsky I et al (1979) The identification and localization of fibronectin in cultured corneal endothelial cells: cell surface polarity and physiological implications. Exp Eye Res 29:485–509

    PubMed  CAS  Google Scholar 

  • Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127:2499–2515

    PubMed  CAS  Google Scholar 

  • Greenlee KJ, Werb Z, Kheradmand F (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87:69–98

    PubMed  CAS  Google Scholar 

  • Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    PubMed  CAS  Google Scholar 

  • Haase M, Gmach CC, Eke I et al (2008) Expression of integrin-linked kinase is increased in differentiated cells. J Histochem Cytochem (in press)

    Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    PubMed  CAS  Google Scholar 

  • Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L et al (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379:91–96

    PubMed  CAS  Google Scholar 

  • Hay ED (1989) Extracellular matrix, cell skeletons, and embryonic development. Am J Med Genet 34:14–29

    PubMed  CAS  Google Scholar 

  • Hayashi I, Vuori K, Liddington RC (2002) The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat Struct Biol 9:101–106

    PubMed  CAS  Google Scholar 

  • Hehlgans S, Eke I, Cordes N (2007a) An essential role of integrin-linked kinase in the cellular radiosensitivity of normal fibroblasts during the process of cell adhesion and spreading. Int J Radiat Biol 83:769–779

    CAS  Google Scholar 

  • Hehlgans S, Haase M, Cordes N (2007b) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775:163–180

    CAS  Google Scholar 

  • Hehlgans S, Eke I, Deuse Y et al (2008) Integrin-linked kinase: Dispensable for radiation survival of three-dimensionally cultured fibroblasts. Radiother Oncol 86:329–335

    PubMed  CAS  Google Scholar 

  • Hemperly JJ, DeGuglielmo JK, Reid RA (1990) Characterization of cDNA clones defining variant forms of human neural cell adhesion molecule N-CAM. J Mol Neurosci 2:71–78

    PubMed  CAS  Google Scholar 

  • Hernandez-Barrantes S, Bernardo M, Toth M et al (2002) Regulation of membrane type-matrix metalloproteinases. Semin Cancer Biol 12:131–138

    PubMed  CAS  Google Scholar 

  • Hess F, Estrugo D, Fischer A et al (2007) Integrin-linked kinase interacts with caspase-9 and -8 in an adhesion-dependent manner for promoting radiation-induced apoptosis in human leukemia cells. Oncogene 26:1372–1384

    PubMed  CAS  Google Scholar 

  • Hirao M, Sato N, Kondo T et al (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    PubMed  CAS  Google Scholar 

  • Hodkinson PS, Mackinnon AC, Sethi T (2007) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 83:733–741

    PubMed  CAS  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    PubMed  CAS  Google Scholar 

  • Hynes RO (2003) Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants – or both? Cell 113:821–823

    PubMed  CAS  Google Scholar 

  • Hynes RO (2004) The emergence of integrins: a personal and historical perspective. Matrix Biol 23:333–340

    PubMed  CAS  Google Scholar 

  • Ino Y, Gotoh M, Sakamoto M et al (2002) Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci USA 99:365–370

    PubMed  CAS  Google Scholar 

  • Ishida-Yamamoto A, McGrath JA, Chapman SJ et al (1991) Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. J Invest Dermatol 97:959–968

    PubMed  CAS  Google Scholar 

  • Janes SM, Watt FM (2004) Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol 166:419–431

    PubMed  CAS  Google Scholar 

  • Jinga DC, Blidaru A, Condrea I et al (2006) MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors. J Cell Mol Med 10:499–510

    PubMed  CAS  Google Scholar 

  • Johnson LD (1980) The biochemical properties of basement membrane components in health and disease. Clin Biochem 13:204–208

    PubMed  CAS  Google Scholar 

  • Kasahara T, Koguchi E, Funakoshi M et al (2002) Antiapoptotic action of focal adhesion kinase (FAK) against ionizing radiation. Antioxid Redox Signal 4:491–499

    PubMed  CAS  Google Scholar 

  • Kim DW, Huamani J, Fu A et al (2006) Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy. Int J Radiat Oncol Biol Phys 64:38–46

    PubMed  CAS  Google Scholar 

  • Kiosses WB, Shattil SJ, Pampori N et al (2001) Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 3:316–320

    PubMed  CAS  Google Scholar 

  • Klemke RL, Leng J, Molander R et al (1998) CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 140:961–972

    PubMed  CAS  Google Scholar 

  • Krause M, Baumann M (2008) Clinical biomarkers of kinase activity: examples from EGFR inhibition trials. Cancer Metastasis Rev 27:387–402

    PubMed  CAS  Google Scholar 

  • Kremer CL, Schmelz M, Cress AE (2006) Integrin-dependent amplification of the G2 arrest induced by ionizing radiation. Prostate 66:88–96

    PubMed  CAS  Google Scholar 

  • Kucharewicz I, Kowal K, Buczko W et al (2003) The plasmin system in airway remodeling. Thromb Res 112:1–7

    PubMed  Google Scholar 

  • LaBarge MA, Petersen OW, Bissell MJ (2007) Of microenvironments and mammary stem cells. Stem Cell Rev 3:137–146

    PubMed  CAS  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    PubMed  CAS  Google Scholar 

  • Lee H, Volonte D, Galbiati F et al (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775

    PubMed  CAS  Google Scholar 

  • Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, alpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    PubMed  CAS  Google Scholar 

  • Li ZW, Dalton WS (2006) Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev 20:333–342

    PubMed  Google Scholar 

  • Lipscomb EA, Mercurio AM (2005) Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev 24:413–423

    PubMed  CAS  Google Scholar 

  • Liu S, Calderwood DA, Ginsberg MH (2000) Integrin cytoplasmic domain-binding proteins. J Cell Sci 113 (Pt 20):3563–3571

    PubMed  CAS  Google Scholar 

  • Ljungberg B (2007) Prognostic markers in renal cell carcinoma. Curr Opin Urol 17:303–308

    PubMed  Google Scholar 

  • Lo SH, Chen LB (1994) Focal adhesion as a signal transduction organelle. Cancer Metastasis Rev 13:9–24

    PubMed  CAS  Google Scholar 

  • Lodish H, Berk A, Matsudaira P et al (2004) Molecular cell biology, 5th edn. Freeman, New York

    Google Scholar 

  • Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    PubMed  CAS  Google Scholar 

  • Lynch CC, Matrisian LM (2002) Matrix metalloproteinases in tumor-host cell communication. Differentiation 70:561–573

    PubMed  CAS  Google Scholar 

  • Lynch DK, Ellis CA, Edwards PA et al (1999) Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18:8024–8032

    PubMed  CAS  Google Scholar 

  • Martin KH, Slack JK, Boerner SA et al (2002) Integrin connections map: to infinity and beyond. Science 296:1652–1653

    PubMed  CAS  Google Scholar 

  • Massova I, Kotra LP, Fridman R et al (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095

    PubMed  CAS  Google Scholar 

  • McLean GW, Carragher NO, Avizienyte E et al (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5:505–415

    PubMed  CAS  Google Scholar 

  • Mercurio AM, Rabinovitz I (2001) Towards a mechanistic understanding of tumor invasion—lessons from the alpha6beta 4 integrin. Semin Cancer Biol 11:129–141

    PubMed  CAS  Google Scholar 

  • Mese G, Richard G, White TW (2007) Gap junctions: basic structure and function. J Invest Dermatol 127:2516–2524

    PubMed  CAS  Google Scholar 

  • Mettouchi A, Klein S, Guo W et al (2001) Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol Cell 8:115–127

    PubMed  CAS  Google Scholar 

  • Mileusnic R, Lancashire C, Rose SP (1999) Sequence-specific impairment of memory formation by NCAM antisense oligonucleotides. Learn Mem 6:120–127

    PubMed  CAS  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    PubMed  CAS  Google Scholar 

  • Miyahara R, Tanaka F, Nakagawa T et al (2001) Expression of neural cell adhesion molecules (polysialylated form of neural cell adhesion molecule and L1-cell adhesion molecule) on resected small cell lung cancer specimens: in relation to proliferation state. J Surg Oncol 77:49–54

    PubMed  CAS  Google Scholar 

  • Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    PubMed  CAS  Google Scholar 

  • Morabito A, Piccirillo MC, Monaco K et al (2007) First-line chemotherapy for HER-2 negative metastatic breast cancer patients who received anthracyclines as adjuvant treatment. Oncologist 12:1288–1298

    PubMed  CAS  Google Scholar 

  • Moroi M, Jung SM (1998) Integrin-mediated platelet adhesion. Front Biosci 3:d719–d728

    PubMed  CAS  Google Scholar 

  • Munshi HG, Stack MS (2006) Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev 25:45–56

    PubMed  CAS  Google Scholar 

  • Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930–935

    PubMed  CAS  Google Scholar 

  • Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–560

    PubMed  CAS  Google Scholar 

  • Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532

    PubMed  CAS  Google Scholar 

  • Niessen CM, Gottardi CJ (2008) Molecular components of the adherens junction. Biochim Biophys Acta 1778:562–571

    PubMed  CAS  Google Scholar 

  • Nimwegen MJ van, van de Water B (2007) Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol 73:597–609

    Google Scholar 

  • Nowakowski J, Cronin CN, McRee DE et al (2002) Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure 10:1659–1667

    PubMed  CAS  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE et al (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    PubMed  CAS  Google Scholar 

  • Park CC, Zhang H, Pallavicini M et al (2006) Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66:1526–1535

    PubMed  CAS  Google Scholar 

  • Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416

    PubMed  CAS  Google Scholar 

  • Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–3242

    PubMed  Google Scholar 

  • Perry SV, Cotterill J (1965) Interaction of actin and myosin. Nature 206:161–163

    PubMed  CAS  Google Scholar 

  • Persad S, Attwell S, Gray V et al (2000) Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci USA 97:3207–3212

    PubMed  CAS  Google Scholar 

  • Petersen C, Eicheler W, Frommel A et al (2003) Proliferation and micromilieu during fractionated irradiation of human FaDu squamous cell carcinoma in nude mice. Int J Radiat Biol 79:469–477

    PubMed  CAS  Google Scholar 

  • Petersen OW, Ronnov-Jessen L, Weaver VM et al (1998) Differentiation and cancer in the mammary gland: shedding light on an old dichotomy. Adv Cancer Res 75:135–161

    PubMed  CAS  Google Scholar 

  • Pettitt J (2005) The cadherin superfamily. WormBook 29:1–9

    Google Scholar 

  • Plantefaber LC, Hynes RO (1989) Changes in integrin receptors on oncogenically transformed cells. Cell 56:281–290

    PubMed  CAS  Google Scholar 

  • Pollerberg GE, Burridge K, Krebs KE et al (1987) The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell–cell contacts and cytoskeleton–membrane interactions. Cell Tissue Res 250:227–236

    PubMed  CAS  Google Scholar 

  • Porter JC, Hogg N (1998) Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol 8:390–396

    PubMed  CAS  Google Scholar 

  • Qian X, Karpova T, Sheppard AM et al (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1748

    PubMed  CAS  Google Scholar 

  • Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    PubMed  CAS  Google Scholar 

  • Ramachandran GN, Kartha G (1954) Structure of collagen. Nature 174 (4423):269–270

    PubMed  CAS  Google Scholar 

  • Ramsay AG, Marshall JF, Hart IR (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26:567–578

    PubMed  CAS  Google Scholar 

  • Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    PubMed  CAS  Google Scholar 

  • Reynolds AB (2007) p120-catenin: past and present. Biochim Biophys Acta 1773:2–7

    PubMed  CAS  Google Scholar 

  • Roesler J, Srivatsan E, Moatamed F et al (1997) Tumor suppressor activity of neural cell adhesion molecule in colon carcinoma. Am J Surg 174:251–257

    PubMed  CAS  Google Scholar 

  • Rousset B (1996) [Introduction to the structure and functions of junction communications or gap junctions]. (In French) Ann Endocrinol (Paris) 57:476–480

    CAS  Google Scholar 

  • Ruch RJ, Trosko JE (2001) Gap-junction communication in chemical carcinogenesis. Drug Metab Rev 33:117–124

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1999) Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76:1–20

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (2003) The RGD story: a personal account. Matrix Biol 22:459–465

    PubMed  CAS  Google Scholar 

  • Salanueva IJ, Cerezo A, Guadamillas MC et al (2007) Integrin regulation of caveolin function. J Cell Mol Med 11:969–980

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    PubMed  CAS  Google Scholar 

  • Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692:77–102

    PubMed  CAS  Google Scholar 

  • Schmidt CE, Horwitz AF, Lauffenburger DA et al (1993) Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol 123:977–991

    PubMed  CAS  Google Scholar 

  • Schwartz MA (2001) Integrin signaling revisited. Trends Cell Biol 11:466–470

    PubMed  CAS  Google Scholar 

  • Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668

    PubMed  CAS  Google Scholar 

  • Shiraha H, Glading A, Gupta K et al (1999) IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J Cell Biol 146:243–254

    PubMed  CAS  Google Scholar 

  • Siesser PM, Hanks SK (2006) The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12:3233–3237

    PubMed  CAS  Google Scholar 

  • Small JV, Resch GP (2005) The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr Opin Cell Biol 17:517–523

    PubMed  CAS  Google Scholar 

  • Smith CS, Golubovskaya VM, Peck E et al (2005) Effect of focal adhesion kinase (FAK) downregulation with FAK antisense oligonucleotides and 5-fluorouracil on the viability of melanoma cell lines. Melanoma Res 15:357–362

    PubMed  CAS  Google Scholar 

  • Song KS, Scherer PE, Tang Z et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165

    PubMed  CAS  Google Scholar 

  • Stanchi F, Bordoy R, Kudlacek O et al (2005) Consequences of loss of PINCH2 expression in mice. J Cell Sci 118:5899–5910

    PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    PubMed  CAS  Google Scholar 

  • Sugrue SP, Hay ED (1981) Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol 91:45–54

    PubMed  CAS  Google Scholar 

  • Tachibana K, Sato T, D’Avirro N et al (1995) Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J Exp Med 182:1089–1099

    PubMed  CAS  Google Scholar 

  • Tang Z, Scherer PE, Okamoto T et al (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–22561

    PubMed  CAS  Google Scholar 

  • Tannock IF (1996) Treatment of cancer with radiation and drugs. J Clin Oncol 14:3156–3174

    PubMed  CAS  Google Scholar 

  • Tascilar O, Cakmak GK, Tekin IO et al (2007) Neural cell adhesion molecule-180 expression as a prognostic criterion in colorectal carcinoma: feasible or not? World J Gastroenterol 13:5476–5480

    PubMed  Google Scholar 

  • Trosko JE, Ruch RJ (1998) Cell–cell communication in carcinogenesis. Front Biosci 3:d208–d236

    PubMed  CAS  Google Scholar 

  • Tu Y, Li F, Wu C (1998) Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Mol Biol Cell 9:3367–3382

    PubMed  CAS  Google Scholar 

  • Tu Y, Li F, Goicoechea S et al (1999) The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Mol Cell Biol 19:2425–2434

    PubMed  CAS  Google Scholar 

  • Varmus H, Pao W, Politi K et al (2005) Oncogenes come of age. Cold Spring Harb Symp Quant Biol 70:1–9

    PubMed  CAS  Google Scholar 

  • Vaupel P, Mayer A (2005) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Clin Biol 12:5–10

    PubMed  Google Scholar 

  • Vaynberg J, Fukuda T, Chen K et al (2005) Structure of an ultraweak protein–protein complex and its crucial role in regulation of cell morphology and motility. Mol Cell 17:513–523

    PubMed  CAS  Google Scholar 

  • Velyvis A, Yang Y, Wu C et al (2001) Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain. J Biol Chem 276:4932–4939

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Korner G, Ishai-Michaeli R et al (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9:203–226

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Fuks Z, Ishai-Michaeli R et al (1991) Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J Cell Biochem 45:167–176

    PubMed  CAS  Google Scholar 

  • Wang Y, Mehta PP (1995) Facilitation of gap-junctional communication and gap-junction formation in mammalian cells by inhibition of glycosylation. Eur J Cell Biol 67:285–296

    PubMed  CAS  Google Scholar 

  • Wary KK, Mariotti A, Zurzolo C et al (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634

    PubMed  CAS  Google Scholar 

  • Watt FM (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation. Embo J 21:3919–3926

    PubMed  CAS  Google Scholar 

  • Weaver VM, Lelievre S, Lakins JN et al (2002) beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2:205–216

    PubMed  CAS  Google Scholar 

  • Wedgwood A, Younes A (2006) Targeting lymphoma cells and their microenvironment with novel antibodies. Clin Lymphoma Myeloma 7(Suppl):S33–S40

    PubMed  CAS  Google Scholar 

  • Wei Y, Yang X, Liu Q et al (1999) A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol 144:1285–1294

    PubMed  CAS  Google Scholar 

  • Wild-Bode C, Weller M, Rimner A et al (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    PubMed  CAS  Google Scholar 

  • Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol 288:C494–C506

    CAS  Google Scholar 

  • Yamamoto M, Toya Y, Schwencke C et al (1998) Caveolin is an activator of insulin receptor signaling. J Biol Chem 273:26962–26968

    PubMed  CAS  Google Scholar 

  • Yao ES, Zhang H, Chen YY et al (2007) Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 67:659–664

    PubMed  CAS  Google Scholar 

  • Zahir N, Weaver VM (2004) Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev 14:71–80

    PubMed  CAS  Google Scholar 

  • Zips D, Eicheler W, Geyer P et al (2005) Enhanced susceptibility of irradiated tumor vessels to vascular endothelial growth factor receptor tyrosine kinase inhibition. Cancer Res 65:5374–5379

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cordes, N., Hehlgans, S., Eke, I. (2009). Adhesion, Invasion, Integrins, and Beyond. In: Molls, M., Vaupel, P., Nieder, C., Anscher, M. (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74386-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74386-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74385-9

  • Online ISBN: 978-3-540-74386-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics