Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

This chapter contains a review of the potential of radioand chemotherapy to eradicate tumor cells. With regard to the amount of quantitative cell kill, important differences exist between ionizing radiation and chemotherapy. In principle, radiation treatment can be designed to cover the whole tumor with a homogeneously distributed full radiation dose, capable of inactivation of all tumor cells. In contrast, pharmacotherapy is limited by the fact that the dose of the active, cell-killing form of the compound is variable within the tumor and its cells. This results from problems in the delivery of drugs (perfusion, interstitial fluid pressure, tissue pH, protein binding, etc.), cellular uptake, efflux, inactivation, and other mechanisms of resistance. In many instances, the agent does not reach the relevant therapeutic targets in the required concentration and for a sufficient time period. In fact, the pharmacokinetic profile of anticancer drugs is characterized by substantial interpatient variability where two- to threefold variation is not uncommon. These issues even gain complexity with simultaneous administration of two or more drugs. Such multiagent regimens with different modes of action might be valuable when each agent kills different tumor cells, which would not become inactivated by the other agent. Depending on variations in actual drug concentration, a fixed combination of two drugs might either show additivity or antagonism in the same tumor cells. Both preclinical and clinical data confirm that rationally designed drug combinations often lead to improved results. Several studies support the superior quantitative cell kill of radiotherapy and suggest that simultaneous application of radio- and chemotherapy is an important measure to increase the efficacy of non-surgical cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardavanis A, Scorilas A, Tryfonopoulos D, et al (2006) Multidisciplinary therapy of locally far-advanced or inflammatory breast cancer with fixed perioperative sequence of epirubicin, vinorelbine, and fluorouracil chemotherapy, surgery, and radiotherapy: long-term results. Oncologist 11:563–573

    PubMed  CAS  Google Scholar 

  • Arnould L, Arveux P, Couturier J, et al (2007) Pathologic complete response to trastuzumab-based neoadjuvant therapy is related to the level of HER-2 amplification. Clin Cancer Res 13:6404–6409

    PubMed  CAS  Google Scholar 

  • Azrak RG, Cao S, Slocum HK, et al (2004) Therapeutic synergy between irinotecan and 5-fluorouracil against human tumor xenografts. Clin Cancer Res 10:1121–1129

    PubMed  CAS  Google Scholar 

  • Bartelink H, Roelofsen F, Eschwege F, et al (1997) Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J Clin Oncol 15:2040–2049

    PubMed  CAS  Google Scholar 

  • Baumann M, Liertz C, Baisch H, et al (1994) Impact of overall treatment time of fractionated irradiation on local control of human FaDu squamous cell carcinoma in nude mice. Radiother Oncol 32:137–143

    PubMed  CAS  Google Scholar 

  • Beck-Bornholdt HP, Dubben HH, Liertz-Petersen C, Willers H (1997) Hyperfractionation: where do we stand? Radiother Oncol 43:1–21

    PubMed  CAS  Google Scholar 

  • Begg AC (1990) Cisplatin and radiation: interaction probabilities and therapeutic possibilities. Int J Radiat Oncol Biol Phys 19:1183–1189

    PubMed  CAS  Google Scholar 

  • Belka C (2006) The fate of irradiated tumor cells. Oncogene 25:969–971

    PubMed  CAS  Google Scholar 

  • Ben-Asher S (1949) Nitrogen mustard therapy: the use of methyl-bis(B-chloroethyl) amine hydrochloride in Hodgkin’s disease, leukemia, lymphosarcoma and cancer of the lung. Am J Med Sci 217:162–168

    PubMed  CAS  Google Scholar 

  • Berrios M, Osheroff N, Fisher PA (1985) In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc Natl Acad Sci U S A 82:4142–4146

    PubMed  CAS  Google Scholar 

  • Berthold DR, Pond GR, Soban F, et al (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26:242–245

    PubMed  CAS  Google Scholar 

  • Brizel DM, Albers ME, Fisher SR, et al (1998) Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N Engl J Med 338:1798–1804

    PubMed  CAS  Google Scholar 

  • Brunsvig PF, Andersen A, Aamdal S, et al (2007) Pharmacokinetic analysis of two different docetaxel dose levels in patients with non-small cell lung cancer treated with docetaxel as monotherapy or with concurrent radiotherapy. BMC Cancer 7:197

    PubMed  Google Scholar 

  • Buda A, Fossati R, Colombo N, et al (2005) Randomized trial of neoadjuvant chemotherapy comparing paclitaxel, ifosfamide, and cisplatin with ifosfamide and cisplatin followed by radical surgery in patients with locally advanced squamous cell cervical carcinoma: the SNAP01 Italian Collaborative Study. J Clin Oncol 23:4137–4145

    PubMed  CAS  Google Scholar 

  • Budach W, Gioioso D, Taghian A, et al (1997) Repopulation capacity during fractionated irradiation of squamous cell carcinomas and glioblastomas in vitro. Int J Radiat Oncol Biol Phys 39:743–750

    PubMed  CAS  Google Scholar 

  • Budach W, Paulsen F, Welz S, et al (2002) Mitomycin C in combination with radiotherapy as a potent inhibitor of tumour cell repopulation in a human squamous cell carcinoma. Br J Cancer 86:470–476

    PubMed  CAS  Google Scholar 

  • Budach V, Stuschke M, Budach W, et al (2005) Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol 23:1125–1135

    PubMed  CAS  Google Scholar 

  • Cao S, Durrani FA, Rustum YM (2005) Synergistic antitumor activity of capecitabine in combination with irinotecan. Clin Colorectal Cancer 4:336–343

    PubMed  CAS  Google Scholar 

  • Chang HJ, Jung KH, Kim DY, et al (2005) Bax, a predictive marker for therapeutic response to preoperative chemoradiotherapy in patients with rectal carcinoma. Hum Pathol 36:364–371

    PubMed  CAS  Google Scholar 

  • Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36:99–114

    PubMed  CAS  Google Scholar 

  • Del Regato JA (1989) Magnus Strandqvist. Int J Radiat Oncol Biol Phys 17:631–642

    PubMed  Google Scholar 

  • Deo SV, Bhutani M, Shukla NK, et al (2003) Randomized trial comparing neo-adjuvant versus adjuvant chemotherapy in operable locally advanced breast cancer (T4b N0-2 M0). J Surg Oncol 84:192–197

    PubMed  CAS  Google Scholar 

  • Dische S, Saunders M, Barrett A, et al (1997) A randomised multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. Radiother Oncol 44:123–136

    PubMed  CAS  Google Scholar 

  • Dreicer R, Magi-Galluzzi C, Zhou M, et al (2004) Phase II trial of neoadjuvant docetaxel before radical prostatectomy for locally advanced prostate cancer. Urology 63:1138–1142

    PubMed  Google Scholar 

  • Durand RE, LePard NE (1994) Modulation of tumor hypoxia by conventional chemotherapeutic agents. Int J Radiat Oncol Biol Phys 29:481–486

    PubMed  CAS  Google Scholar 

  • Durand RE, LePard NE (2000) Effects of mitomycin C on the oxygenation and radiosensitivity of murine and human tumours in mice. Radiother Oncol 56:245–252

    PubMed  CAS  Google Scholar 

  • Dy GK, Krook JE, Green EM, et al (2007) Impact of complete response to chemotherapy on overall survival in advanced colorectal cancer: results from intergroup N9741. J Clin Oncol 25:3469–3474

    PubMed  Google Scholar 

  • Earnshaw WC, Heck MM (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol 100:1716–1725

    PubMed  CAS  Google Scholar 

  • Efferth T, Volm M (2005) Pharmacogenetics for individualized cancer chemotherapy. Pharmacol Ther 107:155–176

    PubMed  CAS  Google Scholar 

  • Eliaz RE, Nir S, Marty C, Szoka FC Jr (2004) Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res 64:711–718

    PubMed  CAS  Google Scholar 

  • Epstein RJ (1990) Drug-induced DNA damage and tumor chemosensitivity. J Clin Oncol 8:2062–2084

    PubMed  CAS  Google Scholar 

  • Evans TR, Yellowlees A, Foster E, et al (2005) Phase III randomized trial of doxorubicin and docetaxel versus doxorubicin and cyclophosphamide as primary medical therapy in women with breast cancer: an Anglo-Celtic cooperative oncology group study. J Clin Oncol 23:2988–2995

    PubMed  CAS  Google Scholar 

  • Farquhar C, Marjoribanks J, Basser R, et al (2005) High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with metastatic breast cancer. Cochrane Database Syst Rev:CD003142

    Google Scholar 

  • Febbo PG, Richie JP, George DJ, et al (2005) Neoadjuvant docetaxel before radical prostatectomy in patients with high-risk localized prostate cancer. Clin Cancer Res 11:5233–5240

    PubMed  CAS  Google Scholar 

  • Ferriere JP, Assier I, Cure H, et al (1998) Primary chemotherapy in breast cancer: correlation between tumor response and patient outcome. Am J Clin Oncol 21:117–120

    PubMed  CAS  Google Scholar 

  • Forastiere AA, Goepfert H, Maor M, et al (2003) Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 349:2091–2098

    PubMed  CAS  Google Scholar 

  • Francini G, Paolelli L, Francini E (2008) Effect of neoadjuvant epirubicin and total androgen blockade on complete pathological response in patients with clinical stage T3/T4 prostate cancer. Eur J Surg Oncol 34:216–221

    PubMed  CAS  Google Scholar 

  • Geard CR, Jones JM (1994) Radiation and taxol effects on synchronized human cervical carcinoma cells. Int J Radiat Oncol Biol Phys 29:565–569

    PubMed  CAS  Google Scholar 

  • Geh JI, Bond SJ, Bentzen SM, et al (2006) Systemic overview of preoperative (neoadjuvant) chemoradiotherapy in patients with oesophageal cancer: evidence of a radiation and chemotherapy dose response. Radiother Oncol 78:236–244

    PubMed  CAS  Google Scholar 

  • Gerard J, Romestaing P, Bonnetain F, et al (2005) Preoperative chemoradiotherapy (CT-RT) improves local control in T3-4 rectal cancers: results of the FFCD 9203 randomized trial (abstract). Int J Radiat Oncol Biol Phys 63(suppl 1):S2–S3

    Google Scholar 

  • Giocanti N, Hennequin C, Balosso J, et al (1993) DNA repair and cell cycle interactions in radiation sensitization by the topoisomerase II poison etoposide. Cancer Res 53:2105–2111

    PubMed  CAS  Google Scholar 

  • Gorodetsky R, Levdansky L, Ringel I, et al (1998) Paclitaxel-induced modification of the effects of radiation and alterations in the cell cycle in normal and tumor mammalian cells. Radiat Res 150:283–291

    PubMed  CAS  Google Scholar 

  • Graham CH, Kobayashi H, Stankiewicz KS, et al (1994) Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst 86:975–982

    PubMed  CAS  Google Scholar 

  • Grau C, Overgaard J (1988) Effect of cancer chemotherapy on the hypoxic fraction of a solid tumor measured using a local tumor control assay. Radiother Oncol 13:301–309

    PubMed  CAS  Google Scholar 

  • Green JA, Kirwan JM, Tierney JF, et al (2001) Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 358:781–786

    PubMed  CAS  Google Scholar 

  • Grosu AL, Molls M, Zimmermann FB, et al (2006) High-precision radiation therapy with integrated biological imaging and tumor monitoring: evolution of the Munich concept and future research options. Strahlenther Onkol 182:361–368

    PubMed  Google Scholar 

  • Grothey A, Hedrick EE, Mass RD, et al. (2008) Response-independent survival benefit in metastatic colorectal cancer: a comparative analysis of N9741 and AVF2107. J Clin Oncol 26:183–189

    PubMed  CAS  Google Scholar 

  • Hartley A, Ho KF, McConkey C, Geh JI (2005) Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phase II/III trials. Br J Radiol 78:934–938

    PubMed  CAS  Google Scholar 

  • Helbekkmo N, Sundstrom S, Aasebo U, et al (2007) Vinorelbine/carboplatin versus gemcitabine/carboplatin in advanced NSCLC shows similar efficacy, but different impact of toxicity. Br J Cancer 97:283–289

    PubMed  CAS  Google Scholar 

  • Hennequin C, Giocanti N, Favaudon V (1996) Interaction of ionizing radiation with paclitaxel (Taxol) and docetaxel (Taxotere) in HeLa and SQ20B cells. Cancer Res 56:1842–1850

    PubMed  CAS  Google Scholar 

  • Hof H, Muenter M, Oetzel D, et al (2007) Stereotactic single-dose radiotherapy (radiosurgery) of early stage nonsmall-cell lung cancer. Cancer 110:148–155

    PubMed  Google Scholar 

  • Holden SA, Emi Y, Kakeji Y, et al (1997) Host distribution and response to antitumor alkylating agents of EMT-6 tumor cells from subcutaneous tumor implants. Cancer Chemother Pharmacol 40:87–93

    PubMed  CAS  Google Scholar 

  • Horiot JC, Lopez-Torrecilla J, Begg AC, et al (1997) Accelerated fractionation (AF) compared to conventional fractionation (CF) improves loco-regional control in the radiotherapy of advanced head and neck cancers: results of the EORTC 22851 randomized trial. Radiother Oncol 44:111–121

    PubMed  CAS  Google Scholar 

  • Hurley J, Doliny P, Reis I, et al (2006) Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol 24:1831–1838

    PubMed  CAS  Google Scholar 

  • Jones B, Sanghera P (2007) Estimation of radiobiologic parameters and equivalent radiation dose of cytotoxic chemotherapy in malignant glioma. Int J Radiat Oncol Biol Phys 68:441–448

    PubMed  Google Scholar 

  • Joschko MA, Webster LK, Groves J, et al (1997) Enhancement of radiation-induced regrowth delay by gemcitabine in a human tumor xenograft model. Radiat Oncol Invest 5:62–71

    CAS  Google Scholar 

  • Kallman RF, Bedarida G, Rapacchietta D (1992) Experimental studies on schedule dependence in the treatment of cancer with combinations of chemotherapy and radiotherapy. Front Radiat Ther Oncol 26:31–44

    PubMed  CAS  Google Scholar 

  • Karlsson YA, Malmstrom PO, Hatschek T, et al (1998) Multimodality treatment of 128 patients with locally advanced breast carcinoma in the era of mammography screening using standard polychemotherapy with 5-fluorouracil, epirubicin, and cyclophosphamide: prognostic and therapeutic implications. Cancer 83:936–947

    PubMed  CAS  Google Scholar 

  • Kasibhatla M, Kirkpatrick JP, Brizel DM (2007) How much radiation is the chemotherapy worth in advanced head and neck cancer? Int J Radiat Oncol Biol Phys 68:1491–1495

    PubMed  Google Scholar 

  • Khalil AA, Bentzen SM, Overgaard J (1997) Steepness of the dose-response curve as a function of volume in an experimental tumor irradiated under ambient or hypoxic conditions. Int J Radiat Oncol Biol Phys 39:797–802

    PubMed  CAS  Google Scholar 

  • Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5:516–525

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Kolozsvary A, Khil MS (1992) Potentiation of radiation response in human carcinoma cells in vitro and murine fibrosarcoma in vivo by topotecan, an inhibitor of DNA topoisomerase I. Int J Radiat Oncol Biol Phys 22:515–518

    PubMed  CAS  Google Scholar 

  • Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21:299–310

    PubMed  CAS  Google Scholar 

  • Krause M, Prager J, Zhou X, et al (2007) EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: differential response of cancer stem cells and nontumourigenic cells? Radiother Oncol 83:316–325

    PubMed  CAS  Google Scholar 

  • Lawrence JH, Tobiascarborn JL, Gottschalk A, Linfoot JA, Kling RP (1963) Alpha particle and proton beams in therapy. JAMA 186:236–245

    PubMed  CAS  Google Scholar 

  • Lawrence TS, Davis MA, Maybaum J (1994) Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects. Int J Radiat Oncol Biol Phys 29:519–523

    PubMed  CAS  Google Scholar 

  • Lawrence TS, Davis MA, Tang HY, Maybaum J (1996a) Fluorodeoxyuridine-mediated cytotoxicity and radiosensitization require S phase progression. Int J Radiat Biol 70:273–280

    CAS  Google Scholar 

  • Lawrence TS, Davis MA, Loney TL (1996b) Fluoropyrimidine-mediated radiosensitization depends on cyclin E-dependent kinase activation. Cancer Res 56:3203–3206

    CAS  Google Scholar 

  • Lawrence TS, Chang EY, Hahn TM (1996c) Radiosensitization of pancreatic cancer cells by 2',2'-difluoro-2'-deoxycytidine. Int J Radiat Oncol Biol Phys 34:867–872

    CAS  Google Scholar 

  • Lawrence TS, Chang EY, Hahn TM, Shewach DS (1997) Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2',2'-difluoro-2'-deoxycytidine (gemcitabine). Clin Cancer Res 3:777–782

    PubMed  CAS  Google Scholar 

  • Lee JW, Park JK, Lee SH, et al (2006) Anti-tumor activity of heptaplatin in combination with 5-fluorouracil or paclitaxel against human head and neck cancer cells in vitro. Anticancer Drugs 17:377–384

    PubMed  CAS  Google Scholar 

  • Lee SS, Kim SB, Park SI, et al (2007) Capecitabine and cisplatin chemotherapy (XP) alone or sequentially combined chemoradiotherapy containing XP regimen in patients with three different settings of stage IV esophageal cancer. Jpn J Clin Oncol 37:829–835

    PubMed  Google Scholar 

  • Louis-Sylvestre C, Clough K, Asselain B, et al (2004) Axillary treatment in conservative management of operable breast cancer: dissection or radiotherapy? Results of a randomized study with 15 years of follow-up. J Clin Oncol 22:97–101

    PubMed  Google Scholar 

  • McGinn CJ, Miller EM, Lindstrom MJ, et al (1994) The role of cell cycle redistribution in radiosensitization: implications regarding the mechanism of fluorodeoxyuridine radiosensitization. Int J Radiat Oncol Biol Phys 30:851–859

    PubMed  CAS  Google Scholar 

  • McGinn CJ, Shewach DS, Lawrence TS (1996) Radiosensitizing nucleosides. J Natl Cancer Inst 88:1193–1203

    PubMed  CAS  Google Scholar 

  • Milas L, Hunter NR, Mason KA, et al (1994) Enhancement of tumor radioresponse of a murine mammary carcinoma by paclitaxel. Cancer Res 54:3506–3510

    PubMed  CAS  Google Scholar 

  • Milas L, Hunter NR, Mason KA, et al (1995) Role of reoxygenation in induction of enhancement of tumor radioresponse by paclitaxel. Cancer Res 55:3564–3568

    PubMed  CAS  Google Scholar 

  • Miller EM, Kinsella TJ (1992) Radiosensitization by fluorodeoxyuridine: effects of thymidylate synthase inhibition and cell synchronization. Cancer Res 52:1687–1694

    PubMed  CAS  Google Scholar 

  • Miller SJ, Lavker RM, Sun TT (2005) Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochem Biophys Acta 1756:25–52

    PubMed  CAS  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 2006:583–592

    Google Scholar 

  • Minna JD, Girard L, Xie Y (2007) Tumor mRNA expression profiles predict responses to chemotherapy. J Clin Oncol 25:4329–4334

    PubMed  CAS  Google Scholar 

  • Minsky BD, Pajak TF, Ginsberg RJ, et al (2002) INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol 20:1167–1174

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Baba M, Sugane T, et al (2007) Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol 2:916–926

    PubMed  Google Scholar 

  • Modarress M, Maghami FQ, Golnavaz M, et al (2005) Comparative study of chemoradiation and neoadjuvant chemotherapy effects before radical hysterectomy in stage IB–IIB bulky cervical cancer and with tumor diameter greater than 4 cm. Int J Gynecol Cancer 15:483–488

    PubMed  CAS  Google Scholar 

  • Molls M, Vaupel P (1998) Blood perfusion and microenvironment of human tumors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moon Y, Todoroki T, Ohno T, et al (2000) Enhanced radiation killing by 5-fluorouracil of biliary tract cancer cell lines. Int J Oncol 16:987–994

    PubMed  CAS  Google Scholar 

  • Naida JD, Davis MA, Lawrence TS (1998) The effect of activation of wild-type p53 function on fluoropyrimidine-mediated radiosensitization. Int J Radiat Oncol Biol Phys 41:675–680

    PubMed  CAS  Google Scholar 

  • Nehls O, Okech T, Hsieh CJ, et al (2005) Low BAX protein expression correlates with disease recurrence in preoperatively irradiated rectal carcinoma. Int J Radiat Oncol Biol Phys 61:85–91

    PubMed  CAS  Google Scholar 

  • Nguyen PL, Zietman AL (2007) High-dose external beam radiation for localized prostate cancer: current status and future challenges. Cancer J 13:295–301

    PubMed  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V, et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiotherapy. An international multicenter study. Radiother Oncol 77:18–24

    PubMed  Google Scholar 

  • Ota T, Takeshima N, Tabata T, et al (2007) Treatment of squamous cell carcinoma of the uterine cervix with radiation therapy alone: long-term survival, late complications, and incidence of second cancers. Br J Cancer 97:1058–1062

    PubMed  CAS  Google Scholar 

  • Paccagnella A, Oniga F, Bearz A, et al (2006) Adding gemcitabine to paclitaxel/carboplatin combination increases survival in advanced non-small cell lung cancer: results of a phase II–III study. J Clin Oncol 24:681–687

    PubMed  CAS  Google Scholar 

  • Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    PubMed  CAS  Google Scholar 

  • Pinedo HM, Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6:1653–1664

    PubMed  CAS  Google Scholar 

  • Primeau AJ, Rendon A, Hedley D, et al (2005) The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 11:8782–8788

    PubMed  CAS  Google Scholar 

  • Raitanen M, Rantanen V, Kulmala J, et al (2002) Supra-additive effect with concurrent paclitaxel and cisplatin in vulvar squamous cell carcinoma in vitro. Int J Cancer 100:238–243

    PubMed  CAS  Google Scholar 

  • Rau B, Sturm I, Lage H, et al (2003) Dynamic expression profile of p21WAF1/CIP1 and Ki-67 predicts survival in rectal carcinoma treated with preoperative radiochemotherapy. J Clin Oncol 21:3391–3401

    PubMed  CAS  Google Scholar 

  • Reitsamer R, Peintinger F, Prokop E, Hitzl W (2005) Pathological complete response rates comparing 3 versus 6 cycles of epidoxorubicin and docetaxel in the neoadjuvant setting of patients with stage II and III breast cancer. Anticancer Drugs 16:867–870

    PubMed  CAS  Google Scholar 

  • Richtig E, Ludwig R, Kerl H, et al (2005) Organ- and treatment-specific local response rates to systemic and local treatment modalities in stage IV melanoma. Br J Dermatol 153:925–931

    PubMed  CAS  Google Scholar 

  • Robert J, Morvan VL, Smith D, et al (2005) Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 54:171–196

    PubMed  Google Scholar 

  • Robertson JM, Shewach DS, Lawrence TS (1996) Preclinical studies of chemotherapy and radiation therapy for pancreatic carcinoma. Cancer 78:674–679

    PubMed  CAS  Google Scholar 

  • Rockwell S (1982) Cytotoxicities of mitomycin C and X rays to aerobic and hypoxic cells in vitro. Int J Radiat Oncol Biol Phys 8:1035–1039

    PubMed  CAS  Google Scholar 

  • Rosier JF, Beauduin M, Bruniaux M, et al (1999) The effect of 2'-2' difluorodeoxycytidine (dFdC, gemcitabine) on radiation-induced cell lethality in two human head and neck squamous carcinoma cell lines differing in intrinsic radiosensitivity. Int J Radiat Biol 75:245–251

    PubMed  CAS  Google Scholar 

  • Rutqvist LE, Johansson H (2006) Long-term follow-up of the Stockholm randomized trials of postoperative radiation therapy versus adjuvant chemotherapy among ‘high risk’ pre- and postmenopausal breast cancer patients. Acta Oncol 45:517–527

    PubMed  CAS  Google Scholar 

  • Sauer R, Becker H, Hohenberger W, et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740

    PubMed  CAS  Google Scholar 

  • Schaake-Koning C, van den Bogaert W, Dalesio O, et al (1992) Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med 326:524–530

    PubMed  CAS  Google Scholar 

  • Schulz-Ertner D, Nikoghosyan A, Hof H, et al. (2007) Carbon ion radiotherapy of skull base chondrosarcomas. Int J Radiat Oncol Biol Phys 67:171–177

    PubMed  Google Scholar 

  • Schütze C, Bergmann R, Yaromina A, et al (2007a) Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol 83:311–315

    Google Scholar 

  • Schütze C, Dörfler A, Eicheler W, et al (2007b) Combination of EGFR/HER2 tyrosine kinase inhibition by BIBW2992 and BIBW2669 with irradiation in FaDu human squamous cell carcinoma. Strahlenther Onkol 182:256–264

    Google Scholar 

  • Scott RB (1970) Cancer chemotherapy: the first 25 years. BMJ 4:259–265

    PubMed  CAS  Google Scholar 

  • Seifert P, Baker LH, Reed ML (1975) Comparison of continuously infused 5-FU with bolus injection in treatment of patients with colorectal carcinoma. Cancer 36:123–128

    PubMed  CAS  Google Scholar 

  • Shaked Y, Emmenegger U, Francia G, et al (2005) Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65:7045–7051

    PubMed  CAS  Google Scholar 

  • Shewach DS, Hahn TM, Chang E, et al (1994) Metabolism of 2',2'-difluoro-2'-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res 54:3218–3223

    PubMed  CAS  Google Scholar 

  • Shimizu D, Ishikawa T, Ichikawa Y, et al (2004) Current progress in the prediction of chemosensitivity for breast cancer. Breast Cancer 11:42–48

    PubMed  Google Scholar 

  • Shimoyama M (1975) The cytocidal action of alkylating agents and anticancer antibodies against in-vitro cultured Yoshida ascites sarcoma cells. J Jpn Soc Cancer Ther 10:63–72

    CAS  Google Scholar 

  • Siewert JR, Molls M, Zimmermann F, Lordick F (2007) Esophageal cancer: clinical management. In: Kelsen DP, Daly JM, Kern SE, Levin B, Trepper JE, van Cutsem E (eds) Principles and practice of gastrointestinal oncology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 203–230

    Google Scholar 

  • Simoens C, Korst AE, De Pooter CM, et al (2003) In vitro interaction between ecteinascidin 743 (ET-743) and radiation, in relation to its cell cycle effects. Br J Cancer 89:2305–2311

    PubMed  CAS  Google Scholar 

  • Smith IE, A’Hern RP, Coombes GA, et al (2004) A novel continuous infusional 5-fluorouracil-based chemotherapy regimen compared with conventional chemotherapy in the neo-adjuvant treatment of early breast cancer: 5-year results of the TOPIC trial. Ann Oncol 15:751–758

    PubMed  CAS  Google Scholar 

  • Söderlund K, Stål O, Skoog L, et al (2007) Intact Mre11/Rad50/Nbs1 complex predicts good response to radiotherapy in early breast cancer. Int J Radiat Oncol Biol Phys 68:50–58

    PubMed  Google Scholar 

  • Stadler P, Becker A, Feldmann HJ, et al (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749–754

    PubMed  CAS  Google Scholar 

  • Staib P, Staltmeier E, Neurohr K (2005) Prediction of individual response to chemotherapy in patients with acute myeloid leukaemia using the chemosensitivity index Ci. Br J Haematol 128:783–791

    PubMed  CAS  Google Scholar 

  • Steel GG (1979) Terminology in the description of drug-radiation interactions. Int J Radiat Oncol Biol Phys 5:1145–1150

    PubMed  CAS  Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy–chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    PubMed  CAS  Google Scholar 

  • Stewart DJ, Chiritescu G, Dahrouge S, et al. (2007) Chemotherapy dose-response relationships in non-small cell lung cancer and implied resistance mechanisms. Cancer Treat Rev 33:101–137

    PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    PubMed  CAS  Google Scholar 

  • Sturm I, Petrowsky H, Volz R, et al (2001) Analysis of p53/BAX/p16(ink4a/CDKN2) in esophageal squamous cell carcinoma: high BAX and p16(ink4a/CDKN2) identifies patients with good prognosis. J Clin Oncol 19:2272–2281

    PubMed  CAS  Google Scholar 

  • Sui M, Dziadyk JM, Zhu X, Fan W (2004) Cell cycle-dependent antagonistic interactions between paclitaxel and gamma-radiation in combination therapy. Clin Cancer Res 10:4848–4857

    PubMed  CAS  Google Scholar 

  • Sundstrom S, Bremnes R, Aasebo U, et al (2004) Hypofractionated palliative radiotherapy (17 Gy per 2 fractions) in advanced non-small cell lung carcinoma is comparable to standard fractionation for symptom control and survival: a national phase III trial. J Clin Oncol 22:801–810

    PubMed  Google Scholar 

  • Taghian AG, Abi-Raad R, Assaad SI, et al (2005) Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol 23:1951–1961

    PubMed  CAS  Google Scholar 

  • Tannock IF (1989) Combined modality treatment with radiotherapy and chemotherapy. Radiother Oncol 16:83–101

    PubMed  CAS  Google Scholar 

  • Tannock IF (1992) Potential for therapeutic gain from combined-modality treatment. Front Radiat Ther Oncol 26:1–15

    PubMed  CAS  Google Scholar 

  • Tannock IF (1998) Conventional cancer therapy: promise broken or promise delayed? Lancet 351(suppl 2):SII9–SII16

    PubMed  Google Scholar 

  • Tannock IF, Lee CM, Tunggal JK, et al (2002) Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 8:878–884

    PubMed  CAS  Google Scholar 

  • Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41:73–81

    PubMed  CAS  Google Scholar 

  • Teicher BA, Herman TS, Holden SA, et al (1990) Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247:1457–1461

    PubMed  CAS  Google Scholar 

  • Thames HD, Suit HD (1986) Tumor radioresponsiveness versus fractionation sensitivity. Int J Radiat Oncol Biol Phys 12:687–691

    PubMed  CAS  Google Scholar 

  • Trott KR (1990) Cell repopulation and overall treatment time. Int J Radiat Oncol Biol Phys 19:1071–1075

    PubMed  CAS  Google Scholar 

  • Tsuji H, Ishikawa H, Yanagi T, et al (2007) Carbon-ion radiotherapy for locally advanced or unfavourably located choroidal melanoma: a phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys 67:857–862

    PubMed  Google Scholar 

  • Ueno NT, Buzdar AU, Singletary SE, et al (1997) Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M.D. Anderson Cancer Center. Cancer Chemother Pharmacol 40:321–329

    PubMed  CAS  Google Scholar 

  • Veyret C, Levy C, Chollet P, et al (2006) Inflammatory breast cancer outcome with epirubicin-based induction and maintenance chemotherapy: ten-year results from the French Adjuvant Study Group GETIS 02 trial. Cancer 107:2535–2544

    PubMed  CAS  Google Scholar 

  • Von Minckwitz G, Blohmer JU, Raab G, et al (2005) In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: the GEPARTRIO pilot study. Ann Oncol 16:56–63

    PubMed  CAS  Google Scholar 

  • Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 46:983–995

    PubMed  CAS  Google Scholar 

  • Wouters BG, van den Beucken T, Magagnin MG, et al (2005) Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol 16:487–501

    PubMed  CAS  Google Scholar 

  • Wu L, Tannock IF (2003) Repopulation in murine breast tumors during and after sequential treatments with cyclophosphamide and 5-fluorouracil. Cancer Res 63:2134–2138

    PubMed  CAS  Google Scholar 

  • Wurschmidt F, Bardenheuer MJ, Muller WU, Molls M (2000) Chromosomal aberrations induced in mice bone marrow by treating with cisplatin and irradiation. Strahlenther Onkol 176:319–323

    PubMed  CAS  Google Scholar 

  • Yang LX, Douple EB, O’Hara JA, Wang HJ (1995) Production of DNA double-strand breaks by interactions between carboplatin and radiation: a potential mechanism for radiopotentiation. Radiat Res 143:309–315

    PubMed  CAS  Google Scholar 

  • Yaromina A, Krause M, Thames H, et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310

    PubMed  CAS  Google Scholar 

  • Yasuda H, Yamaya M, Nakayama K, et al (2006) Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin plus vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small cell lung cancer. J Clin Oncol 24:688–694

    PubMed  CAS  Google Scholar 

  • Yu YQ, Giocanti N, Averbeck D, et al (2000) Radiation-induced arrest of cells in G2 phase elicits hypersensitivity to DNA double-strand break inducers and an altered pattern of DNA cleavage upon re-irradiation. Int J Radiat Biol 76:901–912

    PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Yamada Y, Kollmeier MA, et al (2008) Long-term outcome following three-dimensional conformal/intensity-modulated external-beam radiotherapy for clinical stage T3 prostate cancer. Eur Urol 53:1172–1179

    PubMed  Google Scholar 

  • Zhao L, West BT, Hayman JA, et al (2007) High radiation dose may reduce the negative effect of large gross tumor volume in patients with medically inoperable early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 68:103–110

    PubMed  Google Scholar 

  • Zimmermann FB, Geinitz H, Schill S, et al (2006) Stereotactic hypofractionated radiotherapy in stage I (T1-2 N0 M0) non-small-cell lung cancer (NSCLC). Acta Oncol 45:796–801

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molls, M., Nieder, C., Belka, C., Norum, J. (2009). Quantitative Cell Kill of Radio- and Chemotherapy. In: Molls, M., Vaupel, P., Nieder, C., Anscher, M. (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74386-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74386-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74385-9

  • Online ISBN: 978-3-540-74386-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics