Skip to main content

Nonlinear Synchronization of Coupled Oscillators: The Polynomial Case

  • Chapter
Analysis and Design of Nonlinear Control Systems
  • 3526 Accesses

Abstract

Summary. This paper presents a feedback method to achieve synchronization of coupled identical oscillators which are characterized by polynomial vector fields. Here, synchronization means asymptotic coincidence of the states of all the systems. Even though their models are identical, the state trajectories of the identical systems are different because of different initial conditions. Unlike other approaches where just a linear damping term is added to each system in order to achieve synchronization, we design nonlinear coupling functions between the subsystems in such a way that stability of the error dynamics between any two models results. To do that, a certain dissipation inequality and sum of squares as a computational tool are used. Finally, two examples are presented to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • I.I. Blekhman, A.L. Fradkov, H. Nijmeijer, and A.Y. Pogromsky. On self-synchronization and controlled synchronization. Systems & Control Letters, 31:299–306, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Diestel. Graph Theory. Springer Verlag, 2005.

    Google Scholar 

  • C. Ebenbauer. Polynomial Control Systems: Analysis and Design via Dissipation Inequalities and Sum of Squares. Ph.D dissertation, University of Stuttgart, Germany, 2005.

    Google Scholar 

  • A. Isidori. Nonlinear Control Systems, Vol. II. Springer Verlag, 1999.

    Google Scholar 

  • H.K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

    Google Scholar 

  • J. S. Kim and F. Allgöwer. A nonlinear synchronization scheme for multiple Hindmarsh-Rose models. Submitted for publication, 2007.

    Google Scholar 

  • D. Mishra, A. Yadav, S. Ray, and P.K. Kalra. Controlling synchronization of modified Fitzhugh-Nagumo neurons under external electrical stimulation. NeuroQuantology, 4(1):50–67, 2006.

    Google Scholar 

  • H. Nijmeijer and I.M.Y. Mareels. An observer looks at synchronization. IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, 44:882–890, 1997.

    Article  MathSciNet  Google Scholar 

  • J.G. Ojalvo, M.B. Elowitz, and S. Strogatz. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. In Proc. Natl. Acad. Sci. U.S.A., volume 101, pages 10955–10960, 2004.

    Google Scholar 

  • R. Olfati-Saber and R.M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. on Automat. Contr., 49(9):1520–1533, 2004.

    Article  MathSciNet  Google Scholar 

  • W. T. Oud and I. Tyukin. Sufficient conditions for synchronization of Hindmarsh and Rose neurons: passivity-based-approach. In Proc. of the 6th IFAC Symposium in Nonlinear Control Systems, Stuttgart, 2004.

    Google Scholar 

  • P.A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D dissertation, California Institute of Technology, 2000.

    Google Scholar 

  • L. Pecora and M. Barahona. Synchronization of oscillators in complex networks. Chaos and Complexity Letters, 1:61–91, 2005.

    MATH  Google Scholar 

  • R.D. Pinto, P. Varona, A.R. Volkovskii, A. Szucs, H.D.I. Abarbanel, and M.I. Rabinovich. Synchronous behavior of two coupled electronic neurons. Physical Review E, 62(2):2644–2656, 2000.

    Article  Google Scholar 

  • S. Prajna, A. Papachristodoulou, P. Seiler, and P.A. Parrilo. SOSTOOLS and its control applications, In Positive Polynomials in Control. Lecture Notes in Control and Information Sciences. Springer Verlag, 2005.

    Google Scholar 

  • G.-B. Stan. Global Analysis and Synthesis of Oscillations: a Dissipativity Approach. Ph.D dissertation, University of Liege, Belgium, 2005.

    Google Scholar 

  • G.-B. Stan, A.O. Hamadeh, J. Goncalves, and R. Sepulchre. Output synchronization in networks of cyclic biochemical oscillators. In Proc. of the 2007 Amer. Contr. Conf., New York, 2007.

    Google Scholar 

  • S.H. Strogatz. From Kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143:1–20, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • S.H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001.

    Article  Google Scholar 

  • Y. Wang, A.H. Guan, and H.O. Wang. Feedback and adaptive control for the synchronization of Chen system via a single variable. Physics Letters A, 312:34–40, 2003.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, JS., Allgöwer, F. (2008). Nonlinear Synchronization of Coupled Oscillators: The Polynomial Case. In: Astolfi, A., Marconi, L. (eds) Analysis and Design of Nonlinear Control Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74358-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74358-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74357-6

  • Online ISBN: 978-3-540-74358-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics