A Risk-Based Approach to Sensor Resource Management

  • Dimitri Papageorgiou
  • Maxim Raykin
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 369)

Abstract

We investigate the benefits of employing a suitable risk-based metric to determine in real-time the high level actions that an agile sensor should execute during a mission. Faced with a barrage of competing goals, a sensor resource manager must optimize system performance while simultaneously meeting all requirements. Numerous authors advocate the use of information-theoretic measures for driving sensor tasking algorithms, wherein the relative value of different sensing actions is calculated in terms of the expected gain in information. In this chapter, motivated by the sensor resource allocation problem in missile defense, we deviate from the information-based trend and propose an approach for determining sensor tasking decisions based on risk, or expected loss of defended assets. We present results of a missile defense simulation that illustrate the advantages of our risk-based objective function over its information-theoretic and rule-based counterparts.

Keywords

Sensor Resource Management Risk Missile Defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995)MATHGoogle Scholar
  2. 2.
    Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)MATHGoogle Scholar
  3. 3.
    Bolderheij, F., van Genderen, P.: Mission Driven Sensor Management. In: Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden, pp. 799–804 (2004)Google Scholar
  4. 4.
    Bolderheij, F., Absil, F.G.J., van Genderen, P.: A Risk-Based Object-Oriented Approach to Sensor Management. In: Proceedings of the 7th International Conference on Information Fusion, July 2005, vol. 1, pp. 598–605 (2005)Google Scholar
  5. 5.
    Feinberg, E.A., Bender, M.A., Curry, M.T., Huang, D., Koutsoudis, T., Bernstein, J.L.: Sensor Resource Management for an Airborne Early Warning Radar. In: Drummond, O.E. (ed.) Signal and Data Processing of Small Targets, Proceedings of SPIE, vol. 4728, pp. 145–156 (2002)Google Scholar
  6. 6.
    Hintz, K.J.: A Measure of the Information Gain Attributable to Cueing. IEEE Transactions on Systems, Man, and Cybernetics 21(2), 237–244 (1991)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kalandros, M., Pao, L.Y.: Covariance Control for Multisensor Systems. IEEE Transactions on Aerospace and Electronic Systems 38(4), 1138–1157 (2002)CrossRefGoogle Scholar
  8. 8.
    Kastella, K.: Discrimination Gain to Optimize Detection and Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 27(1), 112–116 (1997)CrossRefGoogle Scholar
  9. 9.
    Kreucher, C., Hero, A.O., Kastella, K.: A Comparison of Task Driven and Information Driven Sensor Management for Target Tracking. In: Proceedings of the 44th IEEE Conf. on Decision and Control, Seville, Spain, pp. 4004–4009. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  10. 10.
    Kreucher, C.: An Information-Based Approach to Sensor Resource Allocation. Ph.D. dissertation, The University of Michigan (2005)Google Scholar
  11. 11.
    Mahler, R.: Global Optimal Sensor Allocation. In: Proceedings of the Ninth National Symposium on Sensor Fusion, vol. I, Monterey, CA, pp. 167–172 (1996)Google Scholar
  12. 12.
    McIntyre, G.A., Hintz, K.J.: An Information-Theoretic Approach to Sensor Scheduling. Proceedings of SPIE 2755, 304–312 (1996)CrossRefGoogle Scholar
  13. 13.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley, Chichester (1994)MATHGoogle Scholar
  14. 14.
    Raykin, M., Papageorgiou, D.: A Risk-Based Approach to Sensor Resource Management. Raytheon Technical Report HQ0006-06-D-0001 (2007)Google Scholar
  15. 15.
    Rudary, M., Khosla, D., Guillochon, J., Dow, P.A., Blyth, B.: A Sparse Sampling Planner for Sensor Resource Management. In: Kadar, I. (ed.) Proceedings of SPIE, vol. 6235, Signal Processing, Sensor Fusion, and Target Recognition XV, pp. 62350A1-62350A9 (2006)Google Scholar
  16. 16.
    Ryan, M.: Hierarchical Decision Making. In: Si, J., Barto, A.G., Powell, W.B., Wunsch, D. (eds.) Handbook of Learning and Approximate Dynamic Programming. IEEE Press Series on Computational Intelligence, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Schmaedeke, W.W.: Information-based Sensor Management. In: Proceedings of SPIE, vol. 1955, Signal Processing, Sensor Fusion, and Target Recognition II, April 1993, pp. 156–164 (1993)Google Scholar
  18. 18.
    Schmaedeke, W.W., Kastella, K.: Information-based Sensor Management and IMMKF. In: Proceedings of the SPIE Conference on Signal Processing of Small Targets, vol. 3373, Orlando, FL (1998)Google Scholar
  19. 19.
    Schneider, M.K., Chong, C.: A Rollout Algorithm to Coordinate Multiple Sensor Resources to Track and Discriminate Targets. In: Kadar, I. (ed.) Proceedings of SPIE, vol. 6235, Signal Processing, Sensor Fusion, and Target Recognition XV, pp. 62350E1-62350E10 (2006)Google Scholar
  20. 20.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dimitri Papageorgiou
    • 1
  • Maxim Raykin
    • 1
  1. 1.The Raytheon Company, Integrated Defense Systems, Woburn, MA 01801 

Personalised recommendations