Skip to main content

Finite Dynamical Systems: A Mathematical Framework for Computer Simulation

  • Conference paper
Mathematical Modeling, Simulation, Visualization and e-Learning
  • 1232 Accesses

Dynamical systems over finite fields provide a natural mathematical framework for interaction-based computer simulation of complex systems. This paper provides an introduction to a theory of these systems. Motivating examples of agent-based simulations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Asachenkov, G. Marchuk, R. Mohler, and S. Zuev, Disease dynamics, Birkhäuser, Boston, 1994.

    Google Scholar 

  2. C. Barrett, H. Mortveit, and C. Reidys, Elements of a theory of computer simulation ii: Sequential dynamical systems, Appl. Math. Comput., 107 (2000), pp. 121-136.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Barrett, H. Mortveit, and C. Reidys, Elements of a theory of computer simulation iii: Equivalence of sds, Appl. Math. Comput., 122 (2001), pp. 325-340.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Barrett, H. Mortveit, and C. Reidys, Elements of a theory of computer simulation iv. sequential dynamical systems: fixed points, invertibility and equivalence, Appl. Math. Comput., 134 (2003), pp. 153-171.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Barrett and C. Reidys, Elements of a theory of computer simulation i: Sequential ca over random graphs, Appl. Math. Comput., 98 (1999), pp. 241-259.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bernaschi and F. Castiglione, Selection of escape mutants from immune recognition during HIV infection, Immunol. Cell Biol., 80 (2002), pp. 307-313.

    Article  Google Scholar 

  7. M. Bernaschi, S. Succi, and F. Castiglione, Large-scale cellular automata simulations of the immune system response, Phys. Rev. E, 61 (2000).

    Google Scholar 

  8. F. Castiglione and Z. Agur, Analyzing hypersensitivity to chemotherapy in a cellular automata model of the immune system, in Cancer modeling and simulation, L. Preziosi, ed., Chapman and Hall/CRC Press, London, 2003.

    Google Scholar 

  9. F. Castiglione, K. Duca, A. Jarrah, R. Laubenbacher, D. Hochberg, and D. Thorley-Lawson, Simulating Epstein-Barr virus infection with C-ImmSim, Bioinformatics, 23 (2007), pp. 1371-1377.

    Article  Google Scholar 

  10. F. Celada and P. Seiden, A computer model of cellular interactions in the immune syste, Immunol. Today, 13 (1992), pp. 56-62.

    Article  Google Scholar 

  11. F. Celada and P. Seiden, A model for simulating cognate recognition and response in the immune system, J. Theor. Biol., 158 (1992), pp. 235-270.

    Google Scholar 

  12. F. Celada and P. Seiden, Affinity maturation and hypermutation in a simulation of the humoral immune response, Eur. J. Immunol., 26 (1996), pp. 1350-1358.

    Article  Google Scholar 

  13. O. Colón-Reyes, A. Jarrah, R. Laubenbacher, and B. Sturmfels, Monomial dynamical systems over finite fields, (2004). Preprint.

    Google Scholar 

  14. O. Colón-Reyes, R. Laubenbacher, and B. Pareigis, Boolean Monomial Dynamical Systems, Ann. Combinat., 8 (2004), pp. 425-439.

    Article  MATH  Google Scholar 

  15. P. Cull, Linear analysis of switching nets, Kybernetik, 8 (1971), pp. 31-39.

    Article  MATH  Google Scholar 

  16. D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels, Computations in Algebraic Geometry with Macaulay2, Springer Verlag, New York, 2002.

    Google Scholar 

  17. J. Ellson and S. North, Graphviz - graph visualization software. World Wide Web. http://www.graphviz.org/.

  18. B. Elspas, The theory of autonomous linear sequential networks, IRE Trans. Circuit Theor., (1959), pp. 45-60.

    Google Scholar 

  19. S. Eubank, Scalable, efficient epidemiological simulation, in Proc. 2002 ACM Symp. on Applied Computing, Madrid, Spain, 2002, ACM Press, pp. 139-145.

    Chapter  Google Scholar 

  20. J. Farmer, N. Packard, and A. Perelson, The immune system, adaptation, and machine learning, Phys. D, 2 (1986), pp. 187-204.

    Article  MathSciNet  Google Scholar 

  21. A. Hernández-Toledo, Linear finite dynamical systems, Commun. Algebra, 33 (2005), pp. 2977-2989.

    Article  MATH  Google Scholar 

  22. IMA, Hot topics workshop: Agent based modeling and simulation, University of Minnesota, November 2003, Institute for Mathematics and its Applications. http://www.ima.umn.edu/talks/workshops/11-3-6.2003.

  23. A. Jarrah, R. Laubenbacher, and H. Vastani, Dvd: Discrete visual dynamics. World Wide Web. http://dvd.vbi.vt.edu.

  24. LANL, Transims: transportation analysis simulation system. World Wide Web. http://transims.tsasa.lanl.gov/.

  25. R. Laubenbacher and B. Pareigis, Decomposition and simulation of sequential dynamical systems, Adv. Appl. Math., 30 (2003), pp. 655-678.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Laubenbacher and B. Pareigis, Decomposition and simulation of sequential dynamical systems, Discrete Appl. Math., (2003).

    Google Scholar 

  27. R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse-engineering of gene regulatory networks, J. Theor. Biol., 229 (2004), pp. 523-537.

    Article  MathSciNet  Google Scholar 

  28. M. LeBorgne, A. Benveniste, and P. LeGuernic, Polynomial dynamical systems over finite fields, in Algebraic Computing in Control.

    Google Scholar 

  29. L. Lidl and G. Mullen, When does a polynomial over a finite field permute the elements of the field? Am. Math. Monthly, 95 (1988), pp. 243-246.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Lidl and G. Mullen, When does a polynomial over a finite field permute the elements of the field?, Am. Math. Monthly, 100 (1993), pp. 71-74.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, New York, 1997.

    Google Scholar 

  32. H. Marchand and M. LeBorgne, On the optimal control of polynomial dynamical systems over Z/pZ, in Fourth Workshop on Discrete Event Systems, IEEE, Cagliari, Italy, 1998.

    Google Scholar 

  33. H. Marchand and M. LeBorgne, Partial order control of discrete event systems modeled as polynomial dynamical systems, in IEEE International Conference on Control Applications, Trieste, Italy, 1998.

    Google Scholar 

  34. D. Milligan and M. Wilson, The behavior of affine boolean sequential networks, Connect. Sci., 5 (1993), pp. 153-167.

    Article  Google Scholar 

  35. D. Morpurgo, R. Serentha, P. Seiden, and F. Celada, Modelling thymic functions in a cellular automaton, Int. Immunol., 7 (1995), pp. 505-516.

    Article  Google Scholar 

  36. E. Muraille, D. Thieffry, O. Leo, and M. Kaufman, Toxicity and neuroendocrine regulation of the immune response: a model analysis, J. Theor. Biol., 183 (1996), pp. 285-305.

    Article  Google Scholar 

  37. L. Segel and R.L. Bar-Or, On the role of feedback in promoting conflicting goals of the adaptive immune system, J. Immunol., 163 (1999), pp. 1342-1349.

    Google Scholar 

  38. E. Shudo and Y. Iwasa, Inducible defense against pathogens and parasites: optimal choice among multiple options, J. Theor. Biol., 209 (2001), pp. 233-247.

    Article  Google Scholar 

  39. R. Stengel, R. Ghigliazza, and N. Kulkarni, Optimal enhancement of immune response, Bioinformatics, 18 (2002), pp. 1227-1235.

    Article  Google Scholar 

  40. M. Wilson and D. Milligan, Cyclic behavior of autonomous synchronous boolean networks: Some theorems and conjectures, Connect. Sci., 4 (1992), pp. 143-154.

    Article  Google Scholar 

  41. S. Wolfram, Cellular Automata and Complexity: collected papers, Westview Press, Colorado, 1994.

    MATH  Google Scholar 

  42. S. Wolfram, O. Martin, and A. Odlyzko, Algebraic properties of cellular automata, Comm. Math. Phys., 93 (1984), pp. 219-258.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jarrah, A.S., Laubenbacher, R. (2008). Finite Dynamical Systems: A Mathematical Framework for Computer Simulation. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_21

Download citation

Publish with us

Policies and ethics