Dynamical systems over finite fields provide a natural mathematical framework for interaction-based computer simulation of complex systems. This paper provides an introduction to a theory of these systems. Motivating examples of agent-based simulations are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Asachenkov, G. Marchuk, R. Mohler, and S. Zuev, Disease dynamics, Birkhäuser, Boston, 1994.
C. Barrett, H. Mortveit, and C. Reidys, Elements of a theory of computer simulation ii: Sequential dynamical systems, Appl. Math. Comput., 107 (2000), pp. 121-136.
C. Barrett, H. Mortveit, and C. Reidys, Elements of a theory of computer simulation iii: Equivalence of sds, Appl. Math. Comput., 122 (2001), pp. 325-340.
C. Barrett, H. Mortveit, and C. Reidys, Elements of a theory of computer simulation iv. sequential dynamical systems: fixed points, invertibility and equivalence, Appl. Math. Comput., 134 (2003), pp. 153-171.
C. Barrett and C. Reidys, Elements of a theory of computer simulation i: Sequential ca over random graphs, Appl. Math. Comput., 98 (1999), pp. 241-259.
M. Bernaschi and F. Castiglione, Selection of escape mutants from immune recognition during HIV infection, Immunol. Cell Biol., 80 (2002), pp. 307-313.
M. Bernaschi, S. Succi, and F. Castiglione, Large-scale cellular automata simulations of the immune system response, Phys. Rev. E, 61 (2000).
F. Castiglione and Z. Agur, Analyzing hypersensitivity to chemotherapy in a cellular automata model of the immune system, in Cancer modeling and simulation, L. Preziosi, ed., Chapman and Hall/CRC Press, London, 2003.
F. Castiglione, K. Duca, A. Jarrah, R. Laubenbacher, D. Hochberg, and D. Thorley-Lawson, Simulating Epstein-Barr virus infection with C-ImmSim, Bioinformatics, 23 (2007), pp. 1371-1377.
F. Celada and P. Seiden, A computer model of cellular interactions in the immune syste, Immunol. Today, 13 (1992), pp. 56-62.
F. Celada and P. Seiden, A model for simulating cognate recognition and response in the immune system, J. Theor. Biol., 158 (1992), pp. 235-270.
F. Celada and P. Seiden, Affinity maturation and hypermutation in a simulation of the humoral immune response, Eur. J. Immunol., 26 (1996), pp. 1350-1358.
O. Colón-Reyes, A. Jarrah, R. Laubenbacher, and B. Sturmfels, Monomial dynamical systems over finite fields, (2004). Preprint.
O. Colón-Reyes, R. Laubenbacher, and B. Pareigis, Boolean Monomial Dynamical Systems, Ann. Combinat., 8 (2004), pp. 425-439.
P. Cull, Linear analysis of switching nets, Kybernetik, 8 (1971), pp. 31-39.
D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels, Computations in Algebraic Geometry with Macaulay2, Springer Verlag, New York, 2002.
J. Ellson and S. North, Graphviz - graph visualization software. World Wide Web. http://www.graphviz.org/.
B. Elspas, The theory of autonomous linear sequential networks, IRE Trans. Circuit Theor., (1959), pp. 45-60.
S. Eubank, Scalable, efficient epidemiological simulation, in Proc. 2002 ACM Symp. on Applied Computing, Madrid, Spain, 2002, ACM Press, pp. 139-145.
J. Farmer, N. Packard, and A. Perelson, The immune system, adaptation, and machine learning, Phys. D, 2 (1986), pp. 187-204.
A. Hernández-Toledo, Linear finite dynamical systems, Commun. Algebra, 33 (2005), pp. 2977-2989.
IMA, Hot topics workshop: Agent based modeling and simulation, University of Minnesota, November 2003, Institute for Mathematics and its Applications. http://www.ima.umn.edu/talks/workshops/11-3-6.2003.
A. Jarrah, R. Laubenbacher, and H. Vastani, Dvd: Discrete visual dynamics. World Wide Web. http://dvd.vbi.vt.edu.
LANL, Transims: transportation analysis simulation system. World Wide Web. http://transims.tsasa.lanl.gov/.
R. Laubenbacher and B. Pareigis, Decomposition and simulation of sequential dynamical systems, Adv. Appl. Math., 30 (2003), pp. 655-678.
R. Laubenbacher and B. Pareigis, Decomposition and simulation of sequential dynamical systems, Discrete Appl. Math., (2003).
R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse-engineering of gene regulatory networks, J. Theor. Biol., 229 (2004), pp. 523-537.
M. LeBorgne, A. Benveniste, and P. LeGuernic, Polynomial dynamical systems over finite fields, in Algebraic Computing in Control.
L. Lidl and G. Mullen, When does a polynomial over a finite field permute the elements of the field? Am. Math. Monthly, 95 (1988), pp. 243-246.
L. Lidl and G. Mullen, When does a polynomial over a finite field permute the elements of the field?, Am. Math. Monthly, 100 (1993), pp. 71-74.
R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, New York, 1997.
H. Marchand and M. LeBorgne, On the optimal control of polynomial dynamical systems over Z/pZ, in Fourth Workshop on Discrete Event Systems, IEEE, Cagliari, Italy, 1998.
H. Marchand and M. LeBorgne, Partial order control of discrete event systems modeled as polynomial dynamical systems, in IEEE International Conference on Control Applications, Trieste, Italy, 1998.
D. Milligan and M. Wilson, The behavior of affine boolean sequential networks, Connect. Sci., 5 (1993), pp. 153-167.
D. Morpurgo, R. Serentha, P. Seiden, and F. Celada, Modelling thymic functions in a cellular automaton, Int. Immunol., 7 (1995), pp. 505-516.
E. Muraille, D. Thieffry, O. Leo, and M. Kaufman, Toxicity and neuroendocrine regulation of the immune response: a model analysis, J. Theor. Biol., 183 (1996), pp. 285-305.
L. Segel and R.L. Bar-Or, On the role of feedback in promoting conflicting goals of the adaptive immune system, J. Immunol., 163 (1999), pp. 1342-1349.
E. Shudo and Y. Iwasa, Inducible defense against pathogens and parasites: optimal choice among multiple options, J. Theor. Biol., 209 (2001), pp. 233-247.
R. Stengel, R. Ghigliazza, and N. Kulkarni, Optimal enhancement of immune response, Bioinformatics, 18 (2002), pp. 1227-1235.
M. Wilson and D. Milligan, Cyclic behavior of autonomous synchronous boolean networks: Some theorems and conjectures, Connect. Sci., 4 (1992), pp. 143-154.
S. Wolfram, Cellular Automata and Complexity: collected papers, Westview Press, Colorado, 1994.
S. Wolfram, O. Martin, and A. Odlyzko, Algebraic properties of cellular automata, Comm. Math. Phys., 93 (1984), pp. 219-258.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jarrah, A.S., Laubenbacher, R. (2008). Finite Dynamical Systems: A Mathematical Framework for Computer Simulation. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-74339-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74338-5
Online ISBN: 978-3-540-74339-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)