Skip to main content

Existence Results and Open Problems in the Kinetic Theory of Dense Gases

  • Conference paper
Book cover Mathematical Modeling, Simulation, Visualization and e-Learning
  • 1193 Accesses

Although the Boltzmann equation is the earliest and best known of the classic equations in kinetic theory, its weakness in modeling non-dilute gases has long been recognized. Some 85 years ago, Enskog proposed modifications for dense gases which generated more accurate transport coefficients than the Boltzmann equation. However, the Enskog equation does not model intermolecular potentials. We wish to outline some recent advances in improving the Enskog equation, and to highlight a number of problems which remain open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Gatignol, Theorie cinetique de gaz a repartition discrete de vitesses, Lecture Notes in Physics 36, Springer-Verlag, New York, 1975.

    Google Scholar 

  2. G. Toscani, On the discrete velocity models of the Boltzmann equation in several dimensions, Ann. Matem. Pura Appl. 138, 279-308 (1984).

    MathSciNet  Google Scholar 

  3. C. Cercignani, Theory and Application of the Boltzmann Equation, Elsevier, New York, 1978.

    Google Scholar 

  4. N. Bellomo, M. Lachowicz, J. Polewczak and G. Toscani, Mathematical Topics in Nonlinear Kinetic Theory II: the Enskog Equation, World Scientific, London, 1991.

    MATH  Google Scholar 

  5. W. Greenberg, P. Lei and R.S. Liu, Stability theory for the kinetic equations of a moderately dense gas, in Rarefied Gas Dynamics: Theory and Simulations (Progress in Astronautics and Aeronautics, vol. 159), B.D. Shizgal and D.P. Weaver, eds., American Institute of Aeronautics and Astronomy, Washington, DC, 1994, pp. 599-607.

    Google Scholar 

  6. W. Greenberg and A. Yao, Kinetic equations for gases with piecewise constant intermolecular potentials, Transport Theor. Stat. Phys. 27, 137-150 (1997).

    Google Scholar 

  7. C. Cercignani, W. Greenberg and P.F. Zweifel, Global solutions of the Boltzmann equations on a lattice, J. Stat. Phys. 20, 449-462 (1979).

    Article  MathSciNet  Google Scholar 

  8. W. Greenberg, J. Voigt and P.F. Zweifel, Discretized Boltzmann equation: lattice limit and non-Maxwellian gases, J. Stat. Phys. 21, 649-657 (1979).

    Article  MathSciNet  Google Scholar 

  9. H.T. Davis, S.A. Rice and J.V. Sengers, On the kinetic theory of dense fluids. IX. the fluid of rigid sphere well attraction, J. Chem. Phys. 35, 2210 (1961).

    MathSciNet  Google Scholar 

  10. T. Platkowski and R. Illner, Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory, SIAM Rev. 30, 239-253 (1988).

    Article  MathSciNet  Google Scholar 

  11. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  12. M. Moreau, Note on the entropy production in a discrete Markov system, J. Math. Phys. 19, 2494-2498 (1978).

    Article  MathSciNet  Google Scholar 

  13. G. Borgioli, G. Lauro and R. Monaco, On the discrete velocity models of the Enskog equation, in Nonlinear Kinetic Theory an Mathematical Aspects of Hyperbolic Systems, V. Boffi, F. Bampi, G. Toscani, eds., Advances in Mathematics for Applied Sciences 9, Singapore, World Scientific, 1992, pp. 38-47.

    Google Scholar 

  14. G. Borgioli, V. Gerasimenko and G. Lauro, Derivation of a discrete Enskog equation from the dynamics of particles, Rend. Sem. Mat. Univ. Polit. Torino 56,59-70 (1998).

    MATH  MathSciNet  Google Scholar 

  15. G. Borgioli, V. Gerasimenko and G. Lauro, Many particle dynamical systems formulation for the discrete Enskog gas, Transport Theor. Stat. Phys. 25, 588-592 (1996).

    MathSciNet  Google Scholar 

  16. W. Greenberg and P. Lei, A Vlasov-Enskog equation with thermal background in gas dynamics, in Differential and Difference Equations and Applications, R.P. Agarwal and K. Perera, eds., Hindawi Publ., New York, 2006, pp. 423-432.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greenberg, W. (2008). Existence Results and Open Problems in the Kinetic Theory of Dense Gases. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_2

Download citation

Publish with us

Policies and ethics