Skip to main content

Approximate Scale-Invariant Random Fields: Review and Current Developments

  • Conference paper
Mathematical Modeling, Simulation, Visualization and e-Learning
  • 1182 Accesses

During the last several decades, a great variety of irregular timedependent phenomena and spatial morphologies have been shown to possess stochastic scale-invariance. This led to the development of models based on random fractal processes and, in general, (multi-dimensional) random fractal fields. In contrast to the ideal fractals, commonly assumed to be “scale-free” (reflected for example in the assumption of a simple power-law type correlation functions), the real scale-invariant hierarchies have a finite extend, limited by both a smallest and a largest scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Y.T., Alan H.Cook, MetherellA.J.F.: An experimental test of the inverse square law of gravitation at range of 0.1 m. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 394, 47-68 (1984).

    Article  Google Scholar 

  2. Long, J.C., Chan, H.W. and Price, J.C.: Experimental status of gravitationalstrength forces in the sub-centimeter regime. Nucl. Phys. B, 539, 23-34 (1999); available at arXiv:hep-ph/9805217.

    Article  Google Scholar 

  3. Berry, M.V.: Diffractals. J. Phys. A: Math. Gen. 12, 781-797 (1979).

    Article  Google Scholar 

  4. Panchev, S.: Random Functions and Turbulence. Pergamon Press, Oxford (1971); Monin, A.S. and Yaglom, A.M.: Statistical Fluid Mechanics. MIT Press, Boston (1971).

    Google Scholar 

  5. Priestley, M.A.: Spectral Analysis and Time Series. Academic Press, London (1981).

    MATH  Google Scholar 

  6. Yordanov, O.I. and Atanasov, I.: Self-affine random surfaces. European Phys. J. B, 29, 211-215 (2002).

    Article  MathSciNet  Google Scholar 

  7. Orey, S.: Gaussian sample functions and the Hausdorff dimension of level crossings. Z. Wahrsch’theorie verw. Geb. 15, 249-256 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  8. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985).

    MATH  Google Scholar 

  9. Mandelbrot, B.B.: Fractals, W.H. Freeman and Company, San Francisco (1979); Mandelbrot, B.B.: The Fractal Geometry of Nature, W.H. Freeman and Company, San Francisco (1982).

    Google Scholar 

  10. Sayles, R.S. and Thomas, T.R.: Surface topography as a nonstationary random process, Nature (London) 271, 431-434 (1978); Berry M.V. and Hannay, J.R.: Nature (London) 273, 573 (1978).

    Google Scholar 

  11. Yordanov, O.I. and Nickolaev, N.I.: Self-affinity of time series with a power-law power spectrum. Phys. Rev. E, Rapid Commun., 49, R2517-R2520 (1994).

    Google Scholar 

  12. Yordanov, O.I.: Properties of a special function pertaining to approximately scale-invariant random fields. In: Dobrev V.K. (ed) Proc. 4th Int. Symp. Quantum Theory and Symmetries IV, Heron Press Int., Sofia, Bulgaria, p. 809. (2005).

    Google Scholar 

  13. Greis, N.P. and Greenside, H.S.: Implication of a power-law power-spectrum for self-affinity Phys. Rev. A, 44, 2324-2334 (1991).

    Article  Google Scholar 

  14. Yordanov, O.I. and Ivanova, K.: Description of surface roughness as an approximate self-affine random structure, Surf. Sci., 331-333, 1043-1049 (1995).

    Google Scholar 

  15. Bender, C. M. and Orszag, S. A. Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York (1978).

    MATH  Google Scholar 

  16. Holzwarth, M., Wißing M., Simeonova D.S., Tzanev, S., Snowdon, K.J. and Yordanov, O.I.: Preparation of atomically amooth surfaces via sputtering under glancing incidence conditions, Surf. Sci., 331-333, 1093-1098 (1995).

    Google Scholar 

  17. Yordanov, O.I. and Guissard, A.: Approximate self-affine model for cultivated soil roughness, Physica A, 238/1-4, 49-65 (1997).

    Google Scholar 

  18. Yordanov, O.I. and Nickolaev, N.I.: Approximate, saturated and blurred selfaffinity of random processes with finite domain power-law power spectrum, Physica D, 101, 116-130 (1997).

    Article  MATH  Google Scholar 

  19. Dimitrova, E.S. and Yordanov, O.I.: Statistics of some low-dimensional chaotic flows, Int. J. Chaos Bifur., 11, 2675-2682 (2001).

    Article  Google Scholar 

  20. Vulkova, L.A., Atanasov, I.S. and Yordanov, O.I.: Approximate Self-Affine Characterization of Two-Point Rough Surface Statistics Simulated by Eden Algorithm, Vacuum, 58, 158-165 (2000).

    Article  Google Scholar 

  21. Vulkova, L.A., Atanasov, I.S. and Yordanov, O.I.: Comparison of Numerical Algorithms for Simulation of Molecular Beam epitaxy, Vacuum, 69, 69-73 (2003).

    Google Scholar 

  22. Press W.H., Teukolsky, S.A., Vetterling W.T and Flannery, B.P.: Numerical Recipes in C, Second edition. Cambridge University Press, Cambridge (1992). Book and codes available on-line on http://www.nr.com.

  23. See Wikipeadia: http://en.wikipedia.org/wiki/Spectraldensity.

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yordanov, O.I. (2008). Approximate Scale-Invariant Random Fields: Review and Current Developments. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_16

Download citation

Publish with us

Policies and ethics