Advertisement

Many habitats on the Earth have temperatures that are constantly or seasonally low. Approximately 80% of the biosphere will have a temperature of −3 to −7°C and 90% of the volume of marine habitats is below 5°C. The deep seas will have temperatures from −1°C to −4°C, glacial ice habitats will have temperatures around −5°C, while the Arctic and Antarctic areas have temperatures from −1°C to −35°C.

Keywords

Alpine Area Antarctic Soil Polar Biol Mesophilic Fungus Windmill Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzoz SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 265–285.Google Scholar
  2. Addy HD, Miller MH, Peterson RI (1997) Infectivity of the propagules associated with extraradical mycelia of the two AM fungi following winter freezing. New Phytol 135:745–753.Google Scholar
  3. Addy RH, Boswell EP, Koide RT (1998) Low temperature acclimation and freezing resistance of extraradical VA mycorrhizal hyphae. Mycol Res 102:582–586.Google Scholar
  4. Ahren D, Faedo M, Rajashekar B, Tunlid A (2004) Low genetic diversity among isolates of the nematode trapping fungus Duddingtonia flagrans: Evidence for recent worldwide dispersion from a single common ancestor. Mycol Res 108:1205–1214.PubMedGoogle Scholar
  5. Andrev M, Kotlov Y, Makarova I (1996) Checklist of lichens and lichenicolous fungi of the Russian Arctic. Bryologist 99:137–169.Google Scholar
  6. Arcangali C, Zucconi L, Onofri S, Cannistraro S (1997) Fluorescence study on whole Antarctic spores under enhanced UV radiation. J Photochem Photobiol B: Biol 39:258–264.Google Scholar
  7. Arcangali C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids; approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biospectroscopy 57:187–186.Google Scholar
  8. Atlas RM, di Menna ME, Cameron RE (1978) Ecological investigations of yeasts in Antarctic soils. Antarct Res Ser 30:27–34.Google Scholar
  9. Azmi OR, Seppelt RD (1997) Fungi of the Windmill Islands, Continental Antarctica. Effect of temperature, pH and culture medium on the growth of selected microfungi. Polar Biol 18:128–134.Google Scholar
  10. Babjeva I, Reshetova I (1998) Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–5.Google Scholar
  11. Baharaeen S, Vishniac HS (1982) Cryptococcus lupi sp. nov., an Antarctic basidioblastomycete. Int J Syst Bacteriol 32:229–232.Google Scholar
  12. Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 9–71.Google Scholar
  13. Baublis JA, Wharton Jr RA, Volz PA (1991) Biodiversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:1–12.Google Scholar
  14. Bell AA, Wheeler MH (1986) Biosynthesis and function of fungal melanins. Annu Rev Phytopathol 24:411–451.Google Scholar
  15. Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21: 61–368.Google Scholar
  16. Bergman PS, Shanor L (1957) A new species of Streptotheca. Mycologia 49:879–883.Google Scholar
  17. Bidualt C (1921) Sur les moissisures des viandes congelées. C R Seanc Soc Biol 85:1017–1018.Google Scholar
  18. Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol 70:1328–1335.PubMedGoogle Scholar
  19. Broady PA (1993) Soils heated by volcanism. In: Friedman EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 413–432.Google Scholar
  20. Broady PA, Weinstein RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarct Sci 10:376–385.Google Scholar
  21. Brookes FT, Hansford CG (1923) Mould growth upon cold-stored meat. Trans Br Mycol Soc 8:113–142.Google Scholar
  22. Brown AD (1978) Compatible solutes and extracellular water stress in eukaryotic microorganisms. Adv Microb Physiol 17:181–242.PubMedGoogle Scholar
  23. Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1131.Google Scholar
  24. Cabello MN (1989) Deuteromycotina from Antarctica. New species of hyphomycetes from Danco coast, Antarctic peninsula. Mycotaxon 36:91–94.Google Scholar
  25. Cameron RE, Honour RC, Morelli FA (1976) Antarctic microbiology–preparation for Mars life detection, quarantine, and back contamination. In: Heinrich MR (ed) Extreme environments: Mechanisms of microbial adaptation. Academic Press, New York, pp 57–84.Google Scholar
  26. Carreiro MM, Koske RE (1992) Room temperature isolations can bias against selection of low temperature microfungi in temperate forest soils. Mycologia 84:886–890.Google Scholar
  27. Caretta G, Dal Frate G, Margiarotti AM (1994) A record of Arthrobotrys tortor Jarowara and Engyodontium album (Limber) de Hoog from Antarctica. Bol Micol 9:9–13.Google Scholar
  28. Chlebicki A (2002) Biogeographic relationships between fungi and selected glacial relict plants. Monograph Botan 90:5–230.Google Scholar
  29. Cooney DG, Emerson R (1964) Thermophilic fungi. Freeman, San Fransisco.Google Scholar
  30. Czarnecki B, Bialasiewicz D (1987) Fungi as a component of the aerosphere in the H. Artctowski polar station and its vicinity (King George Island, South Shetland Island). Pol Polar Res 8:153–158.Google Scholar
  31. Day MJ, Cibas CFC, Fujimura KE, Egger KN, Currah RS (2006) Monodictys arctica, a new hyphomycete from the roots of Saxifraga oppositifolia collected in the Canadian high Arctic. Mycotaxon 98:261–272.Google Scholar
  32. Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7.Google Scholar
  33. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309.PubMedGoogle Scholar
  34. Desjardin RA, Ward EWD (1971) Studies on the endogenous respiration of the psychrophilic fungus Typhula idahoensis. Can J Bot 49:2081–2087.Google Scholar
  35. Dexter Y, Cooke RC (1984) Temperature-determined growth and sporulation in the psychrophile Mucor strictus. Trans Br Mycol Soc 83:561–568.Google Scholar
  36. Dexter Y, Cooke RC (1985) Effect of temperature on respiration, nutrient uptake and potassium leakage in the psychrophilic Mucor strictus. Trans Br Mycol Soc 84:131–136.Google Scholar
  37. Di Menna ME (1960) Yeasts from Antarctica. J Gen Microbiol 23:295–300.PubMedGoogle Scholar
  38. Di Menna ME (1966a) Three new species from Antarctic soil:Candida nivalis, Candida gelida and Candida frigida spp.n. Antonie van Leeuwenhoek 32:25–28.PubMedGoogle Scholar
  39. Di Menna ME (1966b) Yeasts in Antarctic soil. Antonie van Leeuwenhoek 32:29–38.PubMedGoogle Scholar
  40. Domsch K-H, Gams W, Anderson T-H (1980) Compendium of soil fungi. Academic Press, London.Google Scholar
  41. Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA (2006) Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol 8:1212–1219.PubMedGoogle Scholar
  42. Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Br Antarct Surv Bull 68:37–43.Google Scholar
  43. Ellis-Evans JC, Walton D (1990) The process of colonization in Antarctic terrestrial and freshwater ecosystems. Proc NIPR Symp Polar Biol 3:151–163.Google Scholar
  44. Finotti E, Moretto D, Marsella R, Mercantini R (1993) Temperature effects and fatty acid patterns in Geomyces species isolated from Antarctic soil. Polar Biol 13:127–130.Google Scholar
  45. Flanagan PW, Scarborough AM (1974) Physiological groups of decomposer fungi on tundra plant remains. In: Holding AJ, Heal OW, McLean SF Jr, Flannagan PE (eds) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, pp 159–181.Google Scholar
  46. Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of MacRobertson and Enderby Lands, Antarctica. Polar Biol 4:81–88.Google Scholar
  47. Flint EA, Stout JD (1960) Microbiology of some soils from Antarctica. Nature 188:767–768.PubMedGoogle Scholar
  48. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.PubMedGoogle Scholar
  49. Friedmann EI (ed) (1993) Antarctic microbiology. Wiley-Liss, New York.Google Scholar
  50. Frisvad JC, Samson RA (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of the food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173.Google Scholar
  51. Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, P. jamesonlandense sp. nov., P. ribium sp. nov., P. soppii and P. lanosum. Int J Syst Evol Microbiol 56:1427–1437.PubMedGoogle Scholar
  52. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49.PubMedGoogle Scholar
  53. Gamundi IJ, Spinedi HA (1988) New species and interesting collections from Danco Coast, Antarctic Peninsula. Mycotaxon 33:467–489.Google Scholar
  54. Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157.Google Scholar
  55. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petriskaa L, Ozerskaya S, Ivanuschkina N, Kochkina G, Laurinavichius K, Pecheritsina S, Fattakhova R and Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128.PubMedGoogle Scholar
  56. Gocheva YG, Krumova E, Slokoska L, Gesheva V, Angelova M (2005) Isolation of filamentous fungi from Antarctica. Comp Rend Acad Bulg Sci 58:403–408.Google Scholar
  57. Gocheva YG, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2006) Cell response of antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110:1347–1354.PubMedGoogle Scholar
  58. Golubev WI (1998) New species of basidiomycetous yeasts, Rhodotorula creatinovora and R. yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykol Phytopathol 32:8–13.Google Scholar
  59. Gorbushina AA, Whitehaed K, Dornieden T, Niesee A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138.Google Scholar
  60. Gorbushina AA, Beck A, Sculte A (2005) Microcolonial rock inhabiting fungi and lichen photobionts: Evidence for mutualistic interactions. Mycol Res 109:1288–1296.PubMedGoogle Scholar
  61. Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774.PubMedGoogle Scholar
  62. Gounot A-M (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197.PubMedGoogle Scholar
  63. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267.Google Scholar
  64. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, and Plemenitas A (2003) Extremophilic fungi in arctic ice: A relation between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278.Google Scholar
  65. Hafellner J, Türk R (2001) Die lichenisierten Pilze Österreichs—eine Checkliste der bisher nachgewiesenen Arten mit Verbreitungsangaben. Stapfia 76:1–167.Google Scholar
  66. Hammonds P, Smith JN (1986) Lipid composition of a psychrophilic, a mesophilic and a thermophilic Mucor species. Trans Br Mycol Soc 86:551–560.Google Scholar
  67. Hansen ES (2006) New or interesting Greenland lichens X. Crypt Mycol 27:271–277.Google Scholar
  68. Hansen ES, Andersen J (1995) Greenland lichens. Rhodos, Copenhagen.Google Scholar
  69. Hawksworth DL (1979) The lichenicolous Hyphomycetes. Bull Br Mus (Nat Hist), Bot 6:183–300.Google Scholar
  70. Hawksworth DL (1981) The lichenicolous Coelomycetes. Bull Br Mus (Nat Hist), Bot 9:1–98.Google Scholar
  71. Hawksworth DL (1982) Secondary fungi in lichen symbiosis: parasites, saprophytes and parasymbionts. J Hattori Bot Lab 52:357–366.Google Scholar
  72. Held BW, Jurgens JA, Arenz BE, Duncan SM, Farrell RC, Blanchette RA (2006) Environmental factors influencing microbial growth inside the historic expediton huts of Ross Island, Antarctica. Int Biodet Biodegr 55:45–53.Google Scholar
  73. Herbert RA (1986) The ecology and physiology of psychrophilic microorganisms. In Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 1–23.Google Scholar
  74. Hesseltine CW, Ellis JJ (1964) The genus Absidia: Gongronella and cylindrical spored species of Absidia. Mycologia 56:568–601.Google Scholar
  75. Hishino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya H, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:175–1181.Google Scholar
  76. Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39:488–492.PubMedGoogle Scholar
  77. Hoog GS de, Smith MT (1981) Hyphozyma, a new genus of yeast-like hyphomycetes. Antonie van Leeuwenhoek 47:339–352.PubMedGoogle Scholar
  78. Hoog GS de, Göttlich E, Platas G, Genilloud O, Leotta G and van Brummelen, J (2005) Evolution, taxonomy and ecology of the genus Thelobolus in Antarctica. Stud Mycol 51:33–76.Google Scholar
  79. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 193:242–245.Google Scholar
  80. Hsiang T, Matsumoto N, Millett SM (1999) Biology and management of Typhula snow molds of turfgrass. Plant Dis 83:788–798.Google Scholar
  81. Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 69:1488–1491.Google Scholar
  82. Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491.PubMedGoogle Scholar
  83. Inglis GD, Popp AP, Selinger LB, Kawcuk LM, Gaudet DA, McAllister TA (2000) Production of cellulases and xylanases by low temperature basidiomycetes. Can J Microbiol 46:860–865.PubMedGoogle Scholar
  84. Istokovics A, Morita N, Izumi K, Hoshino T, Yumoto I, Sawada MT, Ishizaki K, Okyama H (1998) Neutral lipids, phospholipids, and a betain lipid of the snow mould fungus Microdochium nivale. Can J Microbiol 44:1051–1059.Google Scholar
  85. Joffe AZ (1962) Biological properties of some toxic fungi isolated from overwintered cereals. Mycopath Mycol Appl 16:201–221.Google Scholar
  86. Johansen S (1991) Airborne pollen and spores on the arctic island of Jan Mayen. Grana 30:373–379.Google Scholar
  87. Johansen S, Hafsten V (1988) Airborne pollen and spores registrations at Ny-Ålesund, Svalbard. Polar Res 6:11–17.Google Scholar
  88. Jumpponen A, Trappe JM (1998) Dark septate endophytes:A review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310.Google Scholar
  89. Kerry E (1990) Effects of temperature on growth rates of fungi from subantarctic Macquarie Island and casey Antarctica. Polar Biol 10:293–299.Google Scholar
  90. Kobayashi Y, Hiratsuka N, Korf RP, Tubaki K, Aoshima K, Soneda M, Sugiyama M (1967) Mycological studies of the Alaskan Arctic. A Rep Inst Ferment, Osaka 3:1–138.Google Scholar
  91. Kogej T, Wheeler MH, Rižner TL, Gunde-Cimerman N (2004) Evidence for 1, 8-dihydroxynaphtalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209.PubMedGoogle Scholar
  92. Kogej T, Gostincar C, Volkmann M, Gorbuchina AA, Gunde-Cimerman N (2006) Screening of halophilic and psychrophilic fungi for mycosporins–could they act as compatible solutes in fungi? Environ Chem 3:105–110.Google Scholar
  93. Kuehn HH, Gunderson MF (1962) Psychrophilic and mesophilic fungi in fruit filled pastries. Appl Microbiol 10:354–358.PubMedGoogle Scholar
  94. Kuehn HH, Gunderson MF (1963) Psychrophilic and mesophilic fungi in frozen food products. Appl Microbiol 11:352–356.PubMedGoogle Scholar
  95. Kurek E, Korniłłowicz-Kowalski A, Słomka A, Melke J (2007) Characterization of soil filamentous fungi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund Region, Spitzbergen). Pol Polar Res 28:57–73.Google Scholar
  96. Kytöviita M-M (2005) Asymmetric symbiont adaptation in arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol Ecol 53:27–32.PubMedGoogle Scholar
  97. Latter PM, Heal OW (1971) A preliminary study of the growth of fungi and bacteria from temperate and Antarctic soils in relation to temperature. Soil Biol Biochem 3:365–379.Google Scholar
  98. Laursen GA, Miller OK Jr (1977) The distribution of fungal hyphae in Arctic soil on the international biological programme tundra biome site, Barrow, Alaska. Arct Alp Res 9:149–156.Google Scholar
  99. Longton RE (1988) Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge.Google Scholar
  100. Lyakh SP, Kozlova TM, Salivonik SM (1984) Effect of periodic freezing and thawing on cells of the antarctic black yeast Nadsoniella nigra var. hesuelica. Microbiology (Moscow) 52:486–491.Google Scholar
  101. Lydolph MC, Jacobsen J, Arctander P, Gilbert MTP, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringean paleoecology inferred from permafrost-preserved fungal DNA. Appl Environ Microbiol 71:1012–1017.PubMedGoogle Scholar
  102. Ma L, Rogers SO, Catranis CM, Starmer TS (1999) Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295.Google Scholar
  103. Malloch D, Hubart J-M (1987) An undescribed species of Microascus from the cave of Ramioul. Can J Bot 65:2384–2388.Google Scholar
  104. Marshall WA (1997) Seasonality in Antarctic airborne fungal spores. Appl Environ Microbiol 63:2240–2245.PubMedGoogle Scholar
  105. Marshall WA (1998) Aerial transport of keratinaceous substrate and distribution of the fungus Geomyces pannorum in Antarctic soils. Microb Ecol 36:212–219.PubMedGoogle Scholar
  106. Martseniuk LM, Mazilkin IA (1972) Fungi occurring in soils of East Siberia. Mikol Fitopatol 6:448–450.Google Scholar
  107. McFarlane EM, Pilz D, Weber NS (2005) High-elevation gray morels and other Morchella species harvested as non-timber forest products in Idaho and Montana. Mycologist 19:62–68.Google Scholar
  108. McRae CF, Seppelt RD (1999) Filamentous fungi from the Windmill Islands, continental Antarctica. Effect of water content in moss turves on fungal diversity. Polar Biol 22:389–394.Google Scholar
  109. McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111.Google Scholar
  110. Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933.Google Scholar
  111. Möller C, Gams W (1993) Two new hyphomycetes isolated from Antarctic lichens. Mycotaxon 48:441–450.Google Scholar
  112. Montiel PO (2000) Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo-Lett 21:83–90.Google Scholar
  113. Nashimbene J, Caniglia G, Dalle Vedove M (2006) Lichen diversity and ecology in five EU habitats of interest of the Sexten Dolomiten National Park (S Tyrol–NE Italy). Crypt Mycol 27:185–193.Google Scholar
  114. Neill E, Müller EB, Aebi B, Webster J (1972) Culture studies on Hypocrea and Trichoderma V. Hypocrea psychrophila sp. nov. Trans Br Mycol Soc 58:1–4.Google Scholar
  115. Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintramp MN, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784.PubMedGoogle Scholar
  116. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedman EI (ed) Antarctic Microbiology. Wiley-Liss, New York, pp 350–358.Google Scholar
  117. Olech M (1990) preliminary studies on ornithocoprophilous lichens of the Arctic and Antarctic region. Proc NIPR Symp Polar Biol 3:218–223.Google Scholar
  118. Onofri S, Tosi S (1992) Arthrobotrys ferox sp. nov., a springtail-capturing hyphomycete from continental Antarctica. Mycotaxon 44:445–451.Google Scholar
  119. Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks and soil. Ital J Zool Suppl 1:163–168.Google Scholar
  120. Onofri S, Zucconi L, Tosi S (2006) Continental Antarctic fungi. IHW, Eching.Google Scholar
  121. Øvstedal DO, Hawksworth DL (1986) Lichenicolous ascomycetes from Bouvetoya. Norsk Polarinst Skr 185:57–60.Google Scholar
  122. Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, Cambridge.Google Scholar
  123. Pace NP (1997) A molecular view of microbial diversity of the biosphere. Science 276:734–740.PubMedGoogle Scholar
  124. Pedersen OA, Langvad F (1989) Exophiala psychrophila sp. nov., a pathogenic species of black yeasts isolated from farmed Atlantic salmon. Mycol Res 92:153–156.Google Scholar
  125. Pegler DN, Spooner BM, Lewis Smith RI (1980) Higher fungi of Antarctica, the subantarctic zone and Falkland Islands. Kew Bull 35:499–562.Google Scholar
  126. Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fructicose lichens. Mycologia 82:444–451.Google Scholar
  127. Petrini O, Petrini LE, Dreyfuss MM (1992) Psychrophilic deuteromycetes from alpine habitats. Mycol Helvetica 5:9–20.Google Scholar
  128. Petrovicˇ U, Gunde-Cimerman N, Zalar P (2000) Xerotolerant mycobiota from high altitude Anapurna soil, Nepal. FEMS Microbiol Lett 182:339–341.PubMedGoogle Scholar
  129. Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London.Google Scholar
  130. Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie, London.Google Scholar
  131. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial antarctic lake ice:an oasis for life in a polar desert. Science 280:2095–2098.PubMedGoogle Scholar
  132. Pugh GJF, Allsopp D (1982) Microfungi on Signy Island, South Orkney Islands. Br Antarct Surv Bull 57:55–67.Google Scholar
  133. Punsola L, Guarro J (1984) Keratinomyces ceretanicus, sp. nov., a psychrophilic dermatophyte from soil. Mycopathologia 85:185–190.PubMedGoogle Scholar
  134. Rall G (1965) Soil fungi from the alpine zone of the Medicine Bow mountains, Wyoming. Mycologia 57:872–881.Google Scholar
  135. Ratner EN, Fikhte BA (1982) Cytochemical study of glycogen localization and accumulation in cells of the psychrophile Cryptococcus laurentii. Microbiologiya 51:616–621.Google Scholar
  136. Ríos A de los, Wierzchos J, Sancho LG, Ascaso G (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5:231–237.PubMedGoogle Scholar
  137. Ríos A de los, Sancho LG, Grube M, Wierzchos J, Ascaso G (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190.Google Scholar
  138. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221.PubMedGoogle Scholar
  139. Robinson CH, Borisova OB, Callaghan TY, Lee JA (1996) Fungal hyphal length in litter of Dryas octopetala in high-Arctic polar semi-desert, Svalbard. Polar Biol 16:71–74.Google Scholar
  140. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353.Google Scholar
  141. Robinson CH, Saunders PW, Madan NJ, Pryce-Miller EJ, Pentacost A (2004) Does nitrogen deposition affect soil microfungal diversity on soil N and P dynamics in a high Arctic ecosystem? Glob Change Biol 10:1065–1079.Google Scholar
  142. Rollo F, Sassaroli S, Ubaldi M (1995) Molecular phylogeny of the fungi of the Iceman’s grass clothing. Curr Genet 28:289–297.PubMedGoogle Scholar
  143. Ruisi S, Barreca D, Selbmann L, Zucconi L and Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141.Google Scholar
  144. Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 326:595–611.Google Scholar
  145. Saito I (1998) Non-gramineous hosts of Myriosclerotinia borealis. Mycoscience 39:145–153.Google Scholar
  146. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361.PubMedGoogle Scholar
  147. Schipper MA (1967) Mucor strictus Hagem, a psychrophilic fungus and Mucor falcatus sp.n. Antonie van Leeuwenhoek 33:189–195.PubMedGoogle Scholar
  148. Schipper MA (1973) A study on variability in Mucor hiemalis and related species. Stud Mycol 4:1–40.Google Scholar
  149. Schipper MA, Hintikka V (1969) Zygorhynchus psychrophilus sp. n. Antonie van Leeuwenhoek 35:29–32.PubMedGoogle Scholar
  150. Schmidt N, Bölter M (2002) Fungal and bacterial biomass in tundra soils along an Arctic transect from Taimyr Peninsula, central Siberia. Polar Biol 25:871–877.Google Scholar
  151. Selbmann L, Onofri S, Fenice M, Federice F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592.PubMedGoogle Scholar
  152. Selbmann L, de Hoog, GS, Mazzaglia A, Friedman EI, Onofri S (2005) Fungi at the edge of life:cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32.Google Scholar
  153. Seymour FA, Crittenden PD and Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58.Google Scholar
  154. Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci 90:1388–1392.Google Scholar
  155. Smith D (1993) Tolerance to freezing and thawing. In:Jennings DH (ed). Stress tolerance of fungi. Marcel Dekker, New York, pp 145–171.Google Scholar
  156. Smith RIL (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In:Laws RM (ed) Antarctic Ecology I. Academic Press, London, pp 61–162.Google Scholar
  157. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London.Google Scholar
  158. Sonjak S, Frisvad JC, Gunde-Cimerman N (2005) Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53:51–60.PubMedGoogle Scholar
  159. Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microbial Ecol 52:207–216.Google Scholar
  160. Sonjak S, Frisvad JC, Gunde-Cimerman N (2007a). Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. Microb Ecol 54: 298–305.PubMedGoogle Scholar
  161. Sonjak S, Uršič V, Frisvad JC, Gunde-Cimerman N (2007b) Penicillium svalbardense, a new species from Arctic glacial ice. Antonie van Leeuwenhoek 92:43–51.PubMedGoogle Scholar
  162. Staley JT, Palmer FE, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095.PubMedGoogle Scholar
  163. Sterflinger K (2005) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rose C, Gabor P (eds) Yeast handbook: Biodiversity and ecophysiology of yeasts. Springer, New York, pp 505–518.Google Scholar
  164. Stchigel AM, Cano J, McCormack W, Guarro J (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382.Google Scholar
  165. Stchigel AM, Guarro J, McCormack W (2003) Apiosordaria antarctica and Thielavia antarctica, two new ascomycetes from Antarctica. Mycologia 95:1218–1226.Google Scholar
  166. Sugiyama J, Gugiyama Y, Iszuka H (1967) Report of the Japanese summer parties in Dry Valleys, Victoria Land, 1963–1965. Antarct Res 28:23–31.Google Scholar
  167. Tearle PV (1987) Cryptogamic carbohydrate release and microbial response during freeze–thaw cycles in Antarctic fellfield fines. Soil Biol Biochem 19:381–390.Google Scholar
  168. Thompson JW (1984) American Arctic lichens. I. The macrolichens. Columbia University Press, New York.Google Scholar
  169. Thompson JW (1997) American Arctic lichens. II. The microlichens. The University of Wisconsin Press, Wisconsin.Google Scholar
  170. Tosi S, Onofri S, Brusoni M, Zuconi L, Vishniac HS (2005) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482.Google Scholar
  171. Tosi S, Begoña C, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268.Google Scholar
  172. Traquair JA, Gaudet DA, Kokko EG (1987) Ultrastructure and influence of temperature on the in vitro production of Coprinus psychromorbidus sclerotia. Can J Bot 65:124–130.Google Scholar
  173. Van Uden N (1984) Temperature profiles of yeasts. Adv Microbiol Physiol 25:195–251.Google Scholar
  174. Vellinga EC (2004) Ecology and distribution of Lepiotaceous fungi (Agaricaceae)–A review. Nova Hedwigia 78:273–299.Google Scholar
  175. Vincent WF (1988) Microbial ecosystems of Antarctica. Cambrige University Press, Cambridge.Google Scholar
  176. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemisms. Antarct Sci 12:374–385.Google Scholar
  177. Vishniac HS (1985a) Cryptococcus socialis sp. nov. and Cryptococcus consortionis sp. nov., Antarctic basidioblastomycetes. Int J Syst Bacteriol 35:119–122.PubMedGoogle Scholar
  178. Vishniac HS (1985b) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153.PubMedGoogle Scholar
  179. Vishniac HS (1987) Psychrophily and systematics of yeast-like fungi. Stud Mycol 30:389–402.Google Scholar
  180. Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedman EI (ed) Antarctic Microbiology. Wiley-Liss, New York, pp 297–341.Google Scholar
  181. Vishniac HS (1996) Biodiversity of yeast and filamentous microfungi in terrestrial Antarctic ecosystems. Biodiv Conserv 5:1365–1378.Google Scholar
  182. Vishniac HS (2006) Yeast biodiversity in the Antarctic. In Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, New York, pp 419–440.Google Scholar
  183. Vishniac HS, Hempfling WP (1979) Cryptococcus vishniacii sp. nov., an Antarctic yeast. Int J Syst Bacteriol 29:153–158.CrossRefGoogle Scholar
  184. Weber B, Scherr C, Reichenbacher H and Budel B (2007) Fast reactivation by high air humidity and photosynthetic performance of alpine lichens growing endolithically in limestone. Arc Antarc Alp Res 39:309–317.Google Scholar
  185. Weete JD, Gandhi SR (1999) Sterols and fatty acids of the Mortierellaceae: taxonomic implications. Mycologia 91:642–649.Google Scholar
  186. Weinstein RN, Palm ME, Johnstone K and Wynn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89:706–711.Google Scholar
  187. Widden P, Parkinson D (1979) Populations of fungi in high arctic ecosystems. Can J Bot 57:2408–2417.Google Scholar
  188. Wierzchos J, Ascaso C (2001) Life, decay and fossilisation of endolithic microorganisms from Ross Desert, Antarctica: Suggestions for in situ further research. Polar Biol. 24:863–868.Google Scholar
  189. Willerslev E, Hansen EJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017–8021.PubMedGoogle Scholar
  190. Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146.Google Scholar
  191. Xin M-X, Zhou P-J (2007) Mrakia psychrophila sp. nov., a new species from Antarctic soil. J Zhejiang Univ Ser B 8:260–265.Google Scholar
  192. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61.Google Scholar
  193. Zucconi L, Ripa C, Selbmann L, Onofri S (2002) Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol 25:500–505.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jens C. Frisvad
    • 1
  1. 1.Center for Microbial Biotechnology, BioCentrum-DTU, Building 221Technical University of DenmarkLyngbyDenmark

Personalised recommendations