Advertisement

Bacteria in Permafrost

  • David Gilichinsky
  • Tatiana Vishnivetskaya
  • Mayya Petrova
  • Elena Spirina
  • Vladimir Mamykin
  • Elizaveta Rivkina

Significant numbers of viable ancient microorganisms are known to be present within the permafrost. They have been isolated in both polar regions from the cores up to 400 m deep and ground temperatures of −27°C. The age of the cells corresponds to the longevity of the permanently frozen state of the soils, with the oldest cells dating back to ~3 million years in the Arctic, and ~5 million years in the Antarctic. They are the only life forms known to have retained viability over geological time. Thawing of the permafrost renews their physiological activity and exposes ancient life to modern ecosystems. Thus, the permafrost represents a stable and unique physicochemical complex, which maintains life incomparably longer than any other known habitats. If we take into account the depth of the permafrost layers, it is easy to conclude that they contain a total microbial biomass many times higher than that of the soil cover. This great mass of viable matter is peculiar to permafrost only.

Keywords

Arctic Tundra Subzero Temperature Tundra Soil Environmental Clone Methanosarcina Mazei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzov S (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Willey-Liss, New York, pp 265–296.Google Scholar
  2. Becker RE, Volkmann CM (1961) Proceedings of the Alaskan Scientific Conference College, vol 12, pp 188.Google Scholar
  3. Belova SE, Pankratov TA, Dedysh SN (2006) Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology 75:90–96.CrossRefGoogle Scholar
  4. Berestovskaya YY, Vasil’eva L, Chestnykh O, Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra. Mikrobiologiia 71:538–544.Google Scholar
  5. Berestovskaya YY, Rusanov II, Vasil’eva LV, Pimenov NV (2005) The processes of methane production and oxidation in the soils of the Russian Arctic tundra. Microbiology 74:221–229.CrossRefGoogle Scholar
  6. Boyd WL, Boyd JW (1962) Presence of Azotobacter species in polar regions. J Bacteriol 83:429–430.CrossRefPubMedGoogle Scholar
  7. Boyd WL, Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan Arctic, Can J Microbiol 10:917–919.PubMedCrossRefGoogle Scholar
  8. Cameron R, Morelli F (1974) Viable microorganisms from ancient Ross Island and Taylor Valley drill core. Antarct J USA N9:113–116.Google Scholar
  9. Cameron RE, King J, David C (1970) Microbiology, ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica. In: Holdgate MW (ed) Antarctic ecology. Academic Press, New York, pp 702–716.Google Scholar
  10. Campbell D, MacCulloch R, Campbell I (1997) Thermal regimes of some soils in the McMurdo Sound region, Antarctica. Proceedings of Int. Workshop on Polar Desert Ecosystems, Christchurch, New Zealand.Google Scholar
  11. Carpenter EJ, Lin SJ, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517.CrossRefPubMedGoogle Scholar
  12. Castello JD, Rogers SO, Smith JE, Starmer WT, Zhao Y (2005) Plant and bacterial viruses in the Greenland ice sheet. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, NJ, pp 196–207.Google Scholar
  13. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436.CrossRefPubMedGoogle Scholar
  14. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156.CrossRefPubMedGoogle Scholar
  15. Dobrovolskaya TG, Lysak LV, Zvyagintsev DG (1996) Soils and microbial diversity. Eurasian Soil Sci 29:630–634.Google Scholar
  16. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.CrossRefPubMedGoogle Scholar
  17. Fyodorov-Davydov DG, Spirina EV (1998) Microbiological characterization of cryogenic soils in the Kolymskaya lowland. Eurasian Soil Sci 31:1331–1344.Google Scholar
  18. Gilichinsky D (2002) Permafrost as a microbial habitat. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 932–956.Google Scholar
  19. Gilichinsky D, Wagener S (1995) Microbial life in permafrost (A historical review). Permafrost Periglacial Processes 5:243–250.CrossRefGoogle Scholar
  20. Gilichinsky DA, Soina VS, Petrova MA (1993) Cryoprotective properties of water in the Earth cryollitosphere and its role in exobiology. Origins of Life and Evolution of the Biosphere 23:65–75.CrossRefPubMedGoogle Scholar
  21. Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglacial Processes 6:281–291.CrossRefGoogle Scholar
  22. Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton P, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology. Astrobiology 7:275–311.CrossRefPubMedGoogle Scholar
  23. Horowitz NH, Hubbard JS, Cameron RE (1972) Microbiology of Dry Valleys of Antarctica. Science 176:242–245.CrossRefPubMedGoogle Scholar
  24. Isachenko B (1912) Some data on permafrost bacteria. Izvestiya Sankt-Peterburgskogo Botanicheskogo Sada, vol 12, N 5–6:140 (in Russian).Google Scholar
  25. James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res 20:228–235.Google Scholar
  26. Jensen HL (1951) Notes on the microbiology of soil from northern Greenland. Medd Grø´nland 142:23–29.Google Scholar
  27. Kalyaev AV (1947) On anabiosis under permafrost conditions. Microbiologyia 16:121–125 (in Russian).Google Scholar
  28. Kapitsa AP, Ridley JK, Robin GD, Siegert MJ, Zotikov IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686.CrossRefGoogle Scholar
  29. Kapterev PN (1936) Dokladi Akademii Nauk SSSR 12:137–141 (in Russian).Google Scholar
  30. Kapterev PN (1938) Dokladi Akademii Nauk SSSR 20:315–317 (in Russian).Google Scholar
  31. Karl D, Bird D, Bjorkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2146.CrossRefPubMedGoogle Scholar
  32. Kholodii G, Mindlin S, Petrova M, Minakhina S (2003) Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integron acquisition. FEMS Microbiol Lett 226:251–255.CrossRefPubMedGoogle Scholar
  33. Kjoller A, Odum S (1971) Arctic 24:230–232.Google Scholar
  34. Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50:13–23.CrossRefPubMedGoogle Scholar
  35. Kriss AE (1940) Microbiologiya 9:879–886 (in Russian).Google Scholar
  36. Kriss A, Grave N (1944) On microorganisms in one thousand year old permafrost Microbiologiya, N5:251–254 (in Russian).Google Scholar
  37. Llano, G. (1962) The terrestrial life of the Antarctic. Scientific Amer 207:212–220.CrossRefGoogle Scholar
  38. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucl Acids Res 29:173–174.CrossRefPubMedGoogle Scholar
  39. McBee RH, McBee V (1956) The incidence of thermophilic bacteria in Arctic soils and waters. J Bacteriol 71:182–185.PubMedGoogle Scholar
  40. McKay C, Nienow J, Meyer M, Friedmann EI (1993) Continuous nanoclimate data (1985–1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. Antarct Res Ser 61:201–207.Google Scholar
  41. McKay C, Mellon M, Friedmann EI (1998) Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarct Sci 10:31–38.CrossRefPubMedGoogle Scholar
  42. Mannisto M, Haggblom M (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–243.CrossRefPubMedGoogle Scholar
  43. Meyer M, Huang G.-H, Morris G, Friedmann EI (1988) The effect of low temperatures on Antarctic endolithic green algae. Polarforschung 58:113–119.PubMedGoogle Scholar
  44. Mindlin S, Minakhin L, Petrova M, Kholodii G, Minakhina S, Gorlenko Zh, Nikiforov V (2005) Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Res Microbiol 156:994–1004.CrossRefPubMedGoogle Scholar
  45. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818, 2005.CrossRefPubMedGoogle Scholar
  46. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213.CrossRefPubMedGoogle Scholar
  47. Nelson LM, Parkinson D (1978) Growth characteristics of three bacterial isolates from an arctic soil. Can J Microbiol 24:909–14.PubMedCrossRefGoogle Scholar
  48. Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718.CrossRefPubMedGoogle Scholar
  49. Nienow J, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology, New York, Willey-Liss, pp 343–412.Google Scholar
  50. Omelyansky V (1911) Bacteriological investigation of Sanga mammoth and nearby soil. Arkhiv biologicheskikh nauk, N 4:335–340 (in Russian).Google Scholar
  51. Parinkina OM (1989) Microflora of tundra soils: ecological geographical features and productivity. Nauka, Leningrad (in Russian).Google Scholar
  52. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM., Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399:429–436.CrossRefGoogle Scholar
  53. Petrova MA, Mindlin SZ, Gorlenko ZhM, Kalyaeva ES, Soina VS, Bogdanova ES (2002) Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants, Russian J Genet 38:569–1574.CrossRefGoogle Scholar
  54. Pewe T (1975) Quaternary geology of Alaska. Geological Survey Professional paper 835. US Government Printing Office, Washington.Google Scholar
  55. Price P (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251.CrossRefPubMedGoogle Scholar
  56. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636.CrossRefPubMedGoogle Scholar
  57. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098.CrossRefPubMedGoogle Scholar
  58. Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193.CrossRefGoogle Scholar
  59. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233.CrossRefPubMedGoogle Scholar
  60. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221.CrossRefPubMedGoogle Scholar
  61. Rivkina R, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15.CrossRefPubMedGoogle Scholar
  62. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.PubMedGoogle Scholar
  63. Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179.CrossRefPubMedGoogle Scholar
  64. Shoham D (2005) Viral pathogens of humans likely to be preserved in natural ice. In: Castello JD, Rogers SO (eds), Life in ancient ice. Princeton University Press, Princeton, NJ, pp 208–226.Google Scholar
  65. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220.CrossRefPubMedGoogle Scholar
  66. Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4:345–358.CrossRefPubMedGoogle Scholar
  67. Spirina E, Cole J, Chai B, Gilichinsky D, Tiedje J (2003) High throughput approach to study ancient microbial phylogenetic diversity in permafrost as a terrestrial model of Mars. Astrobiology 2:542–543.Google Scholar
  68. Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267.CrossRefPubMedGoogle Scholar
  69. Steven B, Geoffrey B, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523.PubMedCrossRefGoogle Scholar
  70. Thompson L, Yao T, Davis E, Henderson K, Mosley-Thompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Boizan J (1997) Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825.CrossRefGoogle Scholar
  71. Tiedje J, Smith GB, Holden WE, Finney C, Gilichinsky DA (1994) Recovery of DNA, denitrifiers and patterns of antibiotics in microorganisms from ancient permafrost soils of Eastern Siberia. In: Gilichinsky DA (ed) Viable microorganisms in permafrost. Russian Academy of Sciences, Pushchino, pp 83–99.Google Scholar
  72. van Everdingen R (1998, ed) Multi-language glossary of permafrost and related ground-ice terms. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.Google Scholar
  73. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173.CrossRefPubMedGoogle Scholar
  74. Vishnivetskaya TA, Erokhina LG, Spirina EV, Shatilovich AV, Vorobyova EA, Gilichinsky DA (2001) Ancient viable phototrophs within the permafrost. Nova Hedwigia 123:427–442.Google Scholar
  75. Vishnivetskaya TA, Spirina EV, Shatilovich AV, Erokhina LG, Vorobyova EA, Gilichinsky DA (2003) The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology. Int J Astrobiol 2:171–177.CrossRefGoogle Scholar
  76. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6: 400–414.CrossRefPubMedGoogle Scholar
  77. Vishnivetskaya TA, Siletzky R, Jefferies N, JM Tiedje, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240.CrossRefPubMedGoogle Scholar
  78. Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290.CrossRefGoogle Scholar
  79. Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017–8021.CrossRefPubMedGoogle Scholar
  80. Zhang G, Shoham D, Gilichinsky D, Davydov S, Castello J, Rogers S (2006) Evidence for influenza A virus RNA in Siberian lake ice. J Virol 80:12229–12235.CrossRefPubMedGoogle Scholar
  81. Zhou JZ, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919.CrossRefPubMedGoogle Scholar
  82. Zvyagintsev D (1994) Vertical distribution of microbial communities in soils. In: Ritz K, Dighton J, Giller K (eds) Beyond the biomass compositional and functional analysis of soil microbial communities. Wiley, West Sussex, UK, pp 29–37.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Gilichinsky
    • 1
  • Tatiana Vishnivetskaya
    • 2
  • Mayya Petrova
    • 3
  • Elena Spirina
    • 4
  • Vladimir Mamykin
    • 4
  • Elizaveta Rivkina
    • 4
  1. 1.Soil Cryology LaboratoryInstitute of Physicochemical and Biological Problems in Soil Science, Russian Academy of SciencesPushchinoRussia
  2. 2.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  4. 4.Soil Cryology LaboratoryInstitute of Physicochemical and Biological Problems in Soil Science, Russian Academy of SciencesPushchinoRussia

Personalised recommendations