Skip to main content

Bacteria in Subglacial Environments

  • Chapter

Glaciers exist where the annual temperature remains cold enough to allow snowfall to accumulate for an extended period of time and where conditions allow subsequent metamorphosis to ice. Glacial ice forms expansive continental ice sheets in the polar regions, (e.g., in Antarctica and Greenland), and at lower latitudes, ice fields (valley or alpine glaciers) and ice caps (if a volcano or mountain range is completely glaciated) exist globally at high altitude. Temperate glaciers comprise <4% of the glacial ice on the planet, but are important freshwater reservoirs and are often the sources for major rivers vital for irrigation, industry, and providing millions of people with drinking water. The Greenland and Antarctic ice sheets currently cover ~10% of the terrestrial surface (>1.5×107 km2) and contain ~75% of the freshwater on Earth (Paterson 1994). The Antarctic ice sheet alone contains ~90% of the planet's ice and, if melted, would result in a sea level rise of ~65 m (The National Snow and Ice Data Center; http://nsidc.org/).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:66–73.

    Google Scholar 

  • Alley RB, Cuffey KM, Evenson EB, Strasser JC, Lawson DE, Larson GJ (1997) How glaciers entrain and transport basal sediment: physical constraints. Quaternary Sci Rev 16:1017–1038.

    Article  Google Scholar 

  • Anderson KK and 49 others (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:47–51.

    Article  CAS  Google Scholar 

  • Barker JD, Sharp MJ, Fitzsimons, RJ Turner (2006) Abundance and dynamics of dissolved organic carbon in glacier systems. Arct Antarct Alp Res 38:193–172.

    Article  Google Scholar 

  • Bell RE, Studinger M, Tikku AA, Clarke GKC, Gutner MM, Meertens C (2002) Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet. Nature 416:307–310.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia M, Sharp MJ, Foght JM (2006) Distinct bacterial communities exist beneath a High Arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845.

    Article  CAS  PubMed  Google Scholar 

  • Bottrell S, Tranter M (2002) Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d’Arolla, Switzerland. Hydrol Process 16:2363–3468.

    Article  Google Scholar 

  • Bulat SA, Alekhina IA, Blot M, Petit JR, Vasileva LP, de Angelis M, Wagenbach D, Lipenkov VY, Vasilyeva LP, Wloch D, Raynaud D, Lukin VV (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments. Int J Astrobiol 3:1–12.

    Article  CAS  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438.

    Article  CAS  PubMed  Google Scholar 

  • Christner, BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485.

    Article  Google Scholar 

  • Christner, BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577.

    Article  CAS  PubMed  Google Scholar 

  • Christner, BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient ice. Environ Microbiol 5:433–436.

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584.

    Article  CAS  Google Scholar 

  • Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M., Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501.

    Article  Google Scholar 

  • Clarke GKC (2005) Subglacial processes. Annu Rev Earth Planet Sci 33:247–76.

    Article  CAS  Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487.

    Article  CAS  PubMed  Google Scholar 

  • de Angelis M, Petit J-R., Savarino J, Souches R, Thiemens MH (2004) Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry. Earth Planet Sci Lett 222:751–765.

    Article  CAS  Google Scholar 

  • Dowdeswell JA, Siegert MJ (2002) The physiography of modern Antarctic subglacial lakes. Global Planetary Change 35:221–236.

    Article  Google Scholar 

  • Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nishino T, Cavicchioli R (2001) Sphingomonas alaskensis strain AF01, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 67:4945–4954.

    Article  CAS  PubMed  Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340.

    Article  CAS  PubMed  Google Scholar 

  • Fountain AG, Walder JS (1998) Water flow through temperate glaciers. Rev Geophys 36:299–328.

    Article  Google Scholar 

  • Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore ML, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344.

    Article  CAS  PubMed  Google Scholar 

  • Gaidos E, Glazer B, Harris D, Heshiki Z, Jeppsson N, Miller M, Thorsteinsson T, Einarsson B, Kjartansson V, Stefánsson A, de Camargo L, Jóhannessen T, Roberts M, Skidmore ML, Lanoil B (2007) A simple sampler for subglacial water bodies. J Glaciol 53:157–158.

    Article  Google Scholar 

  • Gow AJ, Meese DA (1996) Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes. Ann Glaciol 22:134–140.

    CAS  Google Scholar 

  • Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, van Gasselt S, The HRSC Co-Investigator Team (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434:346–351.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342–1346.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard B, Nienow PW (1997) Alpine glacier hydrology. Quat Sci Rev 16:939–955.

    Article  Google Scholar 

  • Inman M (2005) The plan to unlock Lake Vostok. Science 310:611–612.

    Article  CAS  PubMed  Google Scholar 

  • Kapitsa, AP, Ridley JK, Robin GdeQ, Siegert MJ, Zotikov IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686.

    Article  CAS  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147.

    Article  CAS  PubMed  Google Scholar 

  • Lafreniere MJ, Sharp MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165.

    Article  Google Scholar 

  • Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172.

    Article  CAS  Google Scholar 

  • McKay CP, Hand KP, Doran PT, Anderson DT, Priscu JP (2003) Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica. Geophys Res Lett 30:1702.

    Article  CAS  Google Scholar 

  • Mikucki JA, Foreman CM, Sattler B, Lyons WB, Priscu JP (2004) Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochem 10:199–220.

    Article  CAS  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818.

    Article  CAS  PubMed  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213.

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2007) Exploration of Antarctic subglacial aquatic environments: environmental and scientific Stewardship. National Academies Press, Washington DC.

    Google Scholar 

  • Nienow PW, Sharp M, Willis IC (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surface Processes Landforms 23:105–133.

    Article  Google Scholar 

  • Nye JF (1992) Water veins and lenses in polycrystalline ice. In: Maeno N, Hondoh T (eds) Physics and chemistry of ice. Hokkaido University Press, Sapporo, Japan, pp 200–205.

    Google Scholar 

  • Oswald GKL, Robin GdeQ (1973) Lakes beneath the Antarctic ice sheet. Nature 245:251–254.

    Article  Google Scholar 

  • Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303.

    Article  CAS  PubMed  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edition. Elsevier Science, Tarrytown, New York.

    Google Scholar 

  • Pomelov V (2003) Water sampling of the Subglacial Lake Vostok: Draft comprehensive environmental evaluation (revised). Russian Antarctic Expedition, URL http://south.aari.nw.ru/default_en.html.

  • Price BP (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial biodiversity and bioprospecting. American Society for Microbiology Press, Washington, DC, pp 130–145.

    Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirschtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144.

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Bell RE, Bulat SA, Ellis-Evans JC, Kennicutt MC, Lukin VV, Petit JR, Powell RD, Siegert MJ, Tabacco I (2003) An international plan for Antarctic subglacial lake exploration. Polar Geogr 27:69–83.

    Article  Google Scholar 

  • Priscu JC, Studinger M, Tulaczyk S, Christner BC and Kennicutt M (2007) Antarctic subglacial lakes and rivers. In: Laybourn-Parry J, Vincent W (eds) Polar limnology. Oxford University Press, Oxford.

    Google Scholar 

  • Ridley JK, Cudlip W, Laxon SW (1993) Identification of subglacial lakes using ERS-1 radar altimeter. J Glaciol 39:625–634.

    Google Scholar 

  • Robin GdeQ, Drewry DJ, Meldrum DT (1977) International studies of ice sheet and bedrock. Philos Trans R Soc Lond 279:185–196.

    Article  Google Scholar 

  • Royston-Bishop G, Priscu JC, Tranter M, Christner BC, Siegert MJ, Lee V (2005) Incorporation of particulates into accreted ice above subglacial Lake Vostok, Antarctica. Ann Glaciol 40:145–150.

    Article  Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999). Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110.

    Article  CAS  Google Scholar 

  • Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160.

    Article  CAS  PubMed  Google Scholar 

  • Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609.

    Article  CAS  PubMed  Google Scholar 

  • Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct Sci 17:453–460.

    Article  Google Scholar 

  • Siegert MJ, and 31 others (2007) Exploration of Ellsworth Subglacial Lake: a concept paper on the development, organisation and execution of an experiment to explore, measure and sample the environment of a West Antarctic subglacial lake. Rev Environ Sci Biotech 6:161–179.

    Article  CAS  Google Scholar 

  • Skidmore M, Sharp MJ (1999) Drainage system behaviour of a high Arctic polythermal glacier. Ann Glaciol 28:209–215.

    Article  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220.

    Article  CAS  PubMed  Google Scholar 

  • Skidmore ML, Anderson SP, Sharp MJ, Foght JM, Lanoil BD (2005). Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997.

    Article  CAS  PubMed  Google Scholar 

  • Studinger M, Bell RE, Tikku AA (2004) Estimating the depth and shape of subglacial Lake Vostok’s water cavity from aerogravity data. Geophys Res Lett 31:L12401.

    Article  Google Scholar 

  • Souchez R, Jean-Baptiste P, Petit JR, Lipenkov VY, Jouzel J (2002) What is the deepest part of the Vostok ice core telling us? Earth Sci Rev 60:131–146.

    Article  Google Scholar 

  • Tanghe A, Van Diuck P, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176.

    Article  CAS  PubMed  Google Scholar 

  • Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—a new model. Hydrol Process 16:959–993.

    Article  Google Scholar 

  • Tranter M, Skidmore M, Wadham J (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Process 19:995–998.

    Article  Google Scholar 

  • Turtle EP, Pierazzo E (2001) Thickness of a Europan ice shell from impact crater simulations. Science 294:1326–1328.

    Article  CAS  PubMed  Google Scholar 

  • Ueda HT, Garfield DE (1970) Deep core drilling at Byrd Station Antarctica. In: Gow AJ (ed) International symposium on Antarctic glaciological exploration (ISAGE), Hanover, New Hampshire, USA, 3–7 September 1968, Cambridge, UK, pp 53–62.

    Google Scholar 

  • Wadham JL, Bottrell SH, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355.

    Article  CAS  Google Scholar 

  • Wingham DJ, Siegert ML, Shepherd A, Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature 440:1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Zotikov IA (2006) The Antarctic subglacial Lake Vostok: glaciology, biology, and planetology. Springer, Chichester, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christner, B.C., Skidmore, M.L., Priscu, J.C., Tranter, M., Foreman, C.M. (2008). Bacteria in Subglacial Environments. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_4

Download citation

Publish with us

Policies and ethics