Bacteria in Subglacial Environments

  • Brent C. Christner
  • Mark L. Skidmore
  • John C. Priscu
  • Martyn Tranter
  • Christine M. Foreman

Glaciers exist where the annual temperature remains cold enough to allow snowfall to accumulate for an extended period of time and where conditions allow subsequent metamorphosis to ice. Glacial ice forms expansive continental ice sheets in the polar regions, (e.g., in Antarctica and Greenland), and at lower latitudes, ice fields (valley or alpine glaciers) and ice caps (if a volcano or mountain range is completely glaciated) exist globally at high altitude. Temperate glaciers comprise <4% of the glacial ice on the planet, but are important freshwater reservoirs and are often the sources for major rivers vital for irrigation, industry, and providing millions of people with drinking water. The Greenland and Antarctic ice sheets currently cover ~10% of the terrestrial surface (>1.5×107 km2) and contain ~75% of the freshwater on Earth (Paterson 1994). The Antarctic ice sheet alone contains ~90% of the planet's ice and, if melted, would result in a sea level rise of ~65 m (The National Snow and Ice Data Center;


Cryoconite Hole Temperate Glacier Subglacial Lake Vostok Station Subglacial Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:66–73.Google Scholar
  2. Alley RB, Cuffey KM, Evenson EB, Strasser JC, Lawson DE, Larson GJ (1997) How glaciers entrain and transport basal sediment: physical constraints. Quaternary Sci Rev 16:1017–1038.CrossRefGoogle Scholar
  3. Anderson KK and 49 others (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:47–51.CrossRefGoogle Scholar
  4. Barker JD, Sharp MJ, Fitzsimons, RJ Turner (2006) Abundance and dynamics of dissolved organic carbon in glacier systems. Arct Antarct Alp Res 38:193–172.CrossRefGoogle Scholar
  5. Bell RE, Studinger M, Tikku AA, Clarke GKC, Gutner MM, Meertens C (2002) Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet. Nature 416:307–310.CrossRefPubMedGoogle Scholar
  6. Bhatia M, Sharp MJ, Foght JM (2006) Distinct bacterial communities exist beneath a High Arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845.CrossRefPubMedGoogle Scholar
  7. Bottrell S, Tranter M (2002) Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d’Arolla, Switzerland. Hydrol Process 16:2363–3468.CrossRefGoogle Scholar
  8. Bulat SA, Alekhina IA, Blot M, Petit JR, Vasileva LP, de Angelis M, Wagenbach D, Lipenkov VY, Vasilyeva LP, Wloch D, Raynaud D, Lukin VV (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments. Int J Astrobiol 3:1–12.CrossRefGoogle Scholar
  9. Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438.CrossRefPubMedGoogle Scholar
  10. Christner, BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485.CrossRefGoogle Scholar
  11. Christner, BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577.CrossRefPubMedGoogle Scholar
  12. Christner, BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient ice. Environ Microbiol 5:433–436.CrossRefPubMedGoogle Scholar
  13. Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584.CrossRefGoogle Scholar
  14. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M., Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501.CrossRefGoogle Scholar
  15. Clarke GKC (2005) Subglacial processes. Annu Rev Earth Planet Sci 33:247–76.CrossRefGoogle Scholar
  16. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487.CrossRefPubMedGoogle Scholar
  17. de Angelis M, Petit J-R., Savarino J, Souches R, Thiemens MH (2004) Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry. Earth Planet Sci Lett 222:751–765.CrossRefGoogle Scholar
  18. Dowdeswell JA, Siegert MJ (2002) The physiography of modern Antarctic subglacial lakes. Global Planetary Change 35:221–236.CrossRefGoogle Scholar
  19. Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nishino T, Cavicchioli R (2001) Sphingomonas alaskensis strain AF01, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 67:4945–4954.CrossRefPubMedGoogle Scholar
  20. Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340.CrossRefPubMedGoogle Scholar
  21. Fountain AG, Walder JS (1998) Water flow through temperate glaciers. Rev Geophys 36:299–328.CrossRefGoogle Scholar
  22. Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore ML, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344.CrossRefPubMedGoogle Scholar
  23. Gaidos E, Glazer B, Harris D, Heshiki Z, Jeppsson N, Miller M, Thorsteinsson T, Einarsson B, Kjartansson V, Stefánsson A, de Camargo L, Jóhannessen T, Roberts M, Skidmore ML, Lanoil B (2007) A simple sampler for subglacial water bodies. J Glaciol 53:157–158.CrossRefGoogle Scholar
  24. Gow AJ, Meese DA (1996) Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes. Ann Glaciol 22:134–140.Google Scholar
  25. Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, van Gasselt S, The HRSC Co-Investigator Team (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434:346–351.CrossRefPubMedGoogle Scholar
  26. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342–1346.CrossRefPubMedGoogle Scholar
  27. Hubbard B, Nienow PW (1997) Alpine glacier hydrology. Quat Sci Rev 16:939–955.CrossRefGoogle Scholar
  28. Inman M (2005) The plan to unlock Lake Vostok. Science 310:611–612.CrossRefPubMedGoogle Scholar
  29. Kapitsa, AP, Ridley JK, Robin GdeQ, Siegert MJ, Zotikov IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686.CrossRefGoogle Scholar
  30. Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147.CrossRefPubMedGoogle Scholar
  31. Lafreniere MJ, Sharp MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165.CrossRefGoogle Scholar
  32. Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172.CrossRefGoogle Scholar
  33. McKay CP, Hand KP, Doran PT, Anderson DT, Priscu JP (2003) Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica. Geophys Res Lett 30:1702.CrossRefGoogle Scholar
  34. Mikucki JA, Foreman CM, Sattler B, Lyons WB, Priscu JP (2004) Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochem 10:199–220.CrossRefGoogle Scholar
  35. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818.CrossRefPubMedGoogle Scholar
  36. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213.CrossRefPubMedGoogle Scholar
  37. National Research Council (2007) Exploration of Antarctic subglacial aquatic environments: environmental and scientific Stewardship. National Academies Press, Washington DC.Google Scholar
  38. Nienow PW, Sharp M, Willis IC (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surface Processes Landforms 23:105–133.CrossRefGoogle Scholar
  39. Nye JF (1992) Water veins and lenses in polycrystalline ice. In: Maeno N, Hondoh T (eds) Physics and chemistry of ice. Hokkaido University Press, Sapporo, Japan, pp 200–205.Google Scholar
  40. Oswald GKL, Robin GdeQ (1973) Lakes beneath the Antarctic ice sheet. Nature 245:251–254.CrossRefGoogle Scholar
  41. Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303.CrossRefPubMedGoogle Scholar
  42. Paterson WSB (1994) The physics of glaciers, 3rd edition. Elsevier Science, Tarrytown, New York.Google Scholar
  43. Pomelov V (2003) Water sampling of the Subglacial Lake Vostok: Draft comprehensive environmental evaluation (revised). Russian Antarctic Expedition, URL
  44. Price BP (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251.CrossRefPubMedGoogle Scholar
  45. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial biodiversity and bioprospecting. American Society for Microbiology Press, Washington, DC, pp 130–145.Google Scholar
  46. Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirschtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144.CrossRefPubMedGoogle Scholar
  47. Priscu JC, Bell RE, Bulat SA, Ellis-Evans JC, Kennicutt MC, Lukin VV, Petit JR, Powell RD, Siegert MJ, Tabacco I (2003) An international plan for Antarctic subglacial lake exploration. Polar Geogr 27:69–83.CrossRefGoogle Scholar
  48. Priscu JC, Studinger M, Tulaczyk S, Christner BC and Kennicutt M (2007) Antarctic subglacial lakes and rivers. In: Laybourn-Parry J, Vincent W (eds) Polar limnology. Oxford University Press, Oxford.Google Scholar
  49. Ridley JK, Cudlip W, Laxon SW (1993) Identification of subglacial lakes using ERS-1 radar altimeter. J Glaciol 39:625–634.Google Scholar
  50. Robin GdeQ, Drewry DJ, Meldrum DT (1977) International studies of ice sheet and bedrock. Philos Trans R Soc Lond 279:185–196.CrossRefGoogle Scholar
  51. Royston-Bishop G, Priscu JC, Tranter M, Christner BC, Siegert MJ, Lee V (2005) Incorporation of particulates into accreted ice above subglacial Lake Vostok, Antarctica. Ann Glaciol 40:145–150.CrossRefGoogle Scholar
  52. Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999). Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110.CrossRefGoogle Scholar
  53. Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160.CrossRefPubMedGoogle Scholar
  54. Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609.CrossRefPubMedGoogle Scholar
  55. Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct Sci 17:453–460.CrossRefGoogle Scholar
  56. Siegert MJ, and 31 others (2007) Exploration of Ellsworth Subglacial Lake: a concept paper on the development, organisation and execution of an experiment to explore, measure and sample the environment of a West Antarctic subglacial lake. Rev Environ Sci Biotech 6:161–179.CrossRefGoogle Scholar
  57. Skidmore M, Sharp MJ (1999) Drainage system behaviour of a high Arctic polythermal glacier. Ann Glaciol 28:209–215.CrossRefGoogle Scholar
  58. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220.CrossRefPubMedGoogle Scholar
  59. Skidmore ML, Anderson SP, Sharp MJ, Foght JM, Lanoil BD (2005). Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997.CrossRefPubMedGoogle Scholar
  60. Studinger M, Bell RE, Tikku AA (2004) Estimating the depth and shape of subglacial Lake Vostok’s water cavity from aerogravity data. Geophys Res Lett 31:L12401.CrossRefGoogle Scholar
  61. Souchez R, Jean-Baptiste P, Petit JR, Lipenkov VY, Jouzel J (2002) What is the deepest part of the Vostok ice core telling us? Earth Sci Rev 60:131–146.CrossRefGoogle Scholar
  62. Tanghe A, Van Diuck P, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176.CrossRefPubMedGoogle Scholar
  63. Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—a new model. Hydrol Process 16:959–993.CrossRefGoogle Scholar
  64. Tranter M, Skidmore M, Wadham J (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Process 19:995–998.CrossRefGoogle Scholar
  65. Turtle EP, Pierazzo E (2001) Thickness of a Europan ice shell from impact crater simulations. Science 294:1326–1328.CrossRefPubMedGoogle Scholar
  66. Ueda HT, Garfield DE (1970) Deep core drilling at Byrd Station Antarctica. In: Gow AJ (ed) International symposium on Antarctic glaciological exploration (ISAGE), Hanover, New Hampshire, USA, 3–7 September 1968, Cambridge, UK, pp 53–62.Google Scholar
  67. Wadham JL, Bottrell SH, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355.CrossRefGoogle Scholar
  68. Wingham DJ, Siegert ML, Shepherd A, Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature 440:1033–1036.CrossRefPubMedGoogle Scholar
  69. Zotikov IA (2006) The Antarctic subglacial Lake Vostok: glaciology, biology, and planetology. Springer, Chichester, UK.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Brent C. Christner
    • 1
  • Mark L. Skidmore
    • 2
  • John C. Priscu
    • 3
  • Martyn Tranter
    • 4
  • Christine M. Foreman
    • 3
  1. 1.Department of Biological SciencesLouisiana State UniversityBaton Rouge, LouisianaUSA
  2. 2.Department of Earth SciencesMontana State UniversityBozeman, MontanaUSA
  3. 3.Department of Land Resources and Environmental SciencesMontana State UniversityBozeman, MontanaUSA
  4. 4.Bristol Glaciology Centre, School of Geographical SciencesUniversity of BristolBristolUK

Personalised recommendations