Advertisement

Microalgae in Polar Regions: Linking Functional Genomics and Physiology with Environmental Conditions

  • Thomas Mock
  • David N. Thomas

Protists inhabiting polar regions have been the subject of intense interest ever sincethe first explorers ventured into the inhospitable seas of the Arctic and Southern Oceans (Ehrenberg 1841, 1853; Hooker 1847; Sutherland 1852). The first records of microbial biodiversity in extreme environments were made with the most basic of microscopes, and until the mid 1900s (ultimately when scientific programs in polar regions became more common) much of the work on protists remained largely descriptive and restricted to the more robust physiological experiments that could be attempted under unfavorable field conditions. Despite the fact that there have been nearly 170 years of research into algae living in the Arctic and Antarctic, it is only in the last 20 years that there has been a revolution in laboratory facilities available at remote sites, and of course the technological advances that allow collection, extraction and subsequent cultivation of organisms in home laboratories. Coupled to this, we now have sophisticated molecular tools to determine the true extent of this diversity and, in turn, we know the molecular and physiological capabilities that permit life to continue at the extremes of low temperature. That is not to belittle the need to still look down the microscopes as works such as Scott and Marchant (2005) eloquently demonstrate.

Keywords

Southern Ocean Arctic Ocean Solar Irradiance Snow Mold Polar Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42.PubMedCrossRefGoogle Scholar
  2. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer F W, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86.PubMedCrossRefGoogle Scholar
  3. Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486.CrossRefGoogle Scholar
  4. Beil U, Thiede J (1990) Geophysical history of polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht.Google Scholar
  5. Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861.CrossRefGoogle Scholar
  6. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617.PubMedCrossRefGoogle Scholar
  7. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078.PubMedGoogle Scholar
  8. Brierley AS, Thomas DN (2002) The ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–278.PubMedCrossRefGoogle Scholar
  9. Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol 27:562–571.CrossRefGoogle Scholar
  10. Cheng CHC (1998) Evolution of the divers antifreeze proteins. Curr Opin Genet Devel 8:715–720.CrossRefGoogle Scholar
  11. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414.PubMedCrossRefGoogle Scholar
  12. Comiso JC (2003) Large-scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 112–142.Google Scholar
  13. Cota GF (1985) Photoadaptation of high Arctic ice algae. Nature 315:219–222.CrossRefGoogle Scholar
  14. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309.PubMedCrossRefGoogle Scholar
  15. Detrich HW, Johnson KA, Marchese-Ragona SP (1989) Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28:10085–10093.PubMedCrossRefGoogle Scholar
  16. Devos N, Ingouff M, Loppes R, Matagne R (1998) Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:665–669.CrossRefGoogle Scholar
  17. Dieckmann GS, Hellmer HH (2003) The importance of sea ice: An overview. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 1–21.Google Scholar
  18. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13.CrossRefGoogle Scholar
  19. Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: Growth, microstructure, and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 22–81.Google Scholar
  20. Ehrenberg CG (1841) Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluß des mikroskopischen Lebens in Süd- und Nordamerika. Berichte über die zur Bekanntmachung geeigneten Verhandlung der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, Monatsberichte 1841, pp 202–207.Google Scholar
  21. Ehrenberg CG (1853) Über neue Anschauungen des kleinsten nördlichen Polarlebens. Berichte über die zur Bekanntmachung geeigneten Verhandlung der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, Monatsberichte 1853, pp 522–529.Google Scholar
  22. Feller G, Gerday C (2003) Psychrophilic enzymes; hot topics in cold adaptation. Nat Rev Microbiol 1:200–208.PubMedCrossRefGoogle Scholar
  23. Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:9–13.CrossRefGoogle Scholar
  24. Fogg GE (1998) The biology of polar habitats. Oxford University Press, Oxford.Google Scholar
  25. Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69.PubMedCrossRefGoogle Scholar
  26. Fritzen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol Oceanogr 44:447–454.Google Scholar
  27. Fujita Y (2001) Chromatic cariation of the abundance of PS II complexes observed with the red alga Prophyridium cruentum. Plant Cell Physiol 42:1239–1244.PubMedCrossRefGoogle Scholar
  28. Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230.CrossRefGoogle Scholar
  29. Gleitz M, Rutgers vd Loeff M, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91.CrossRefGoogle Scholar
  30. Gleitz M, Bartsch A, Dieckmann GS, Eicken H (1998) Composition and succession of sea ice diatom assemblages in the eastern and southern Weddell Sea, Antarctica. Antarct Res Ser 73:107–120.Google Scholar
  31. Granskog GA, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea—a review. Estuar Coast Shelf Sci 70:145–160.CrossRefGoogle Scholar
  32. Haas C (2003) Dynamics versus thermodynamics. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 82–111.Google Scholar
  33. Haas C, Thomas DN, Bareiss J (2001) Surface properties and processes of perennial Antarctic sea ice in summer. J Glaciol 47:613–625.CrossRefGoogle Scholar
  34. Hansom JD, Gordon JE (1998) Antarctic environments and resources—a geographical perspective. Addison Wesley Longman, Harlow, Essex.Google Scholar
  35. Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochem 72:233–256.CrossRefGoogle Scholar
  36. Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228.Google Scholar
  37. Hooker JD (1847) The botany of the Antarctic voyage of H.M. Discovery ships Erebus and Terror in the years 1838–1843. Part 1. Flora Antarctica. Reeve Brothers, London.Google Scholar
  38. Horner RA (1985) Sea ice biota. CRC, Baco Raton, Florida, pp 468.Google Scholar
  39. Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181.CrossRefGoogle Scholar
  40. Hsiao S (1983) A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwigia 37:225–314.Google Scholar
  41. Ikävalko J, Gradinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481.CrossRefGoogle Scholar
  42. Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416.CrossRefGoogle Scholar
  43. Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on Earth? Appl Environ Microbiol 57:2308–2311.PubMedGoogle Scholar
  44. Jones EP, Swift JH, Anderson LG, Lipizer M, Civitarese G, Falkner KK, Kattner G, McLaughlin F (2003) Tracing Pacific water in the North Atlantic Ocean. J Geophys Res 108:3116.CrossRefGoogle Scholar
  45. Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea ice bacteria at subzero temperature. Microb Ecol 43:315–328.PubMedCrossRefGoogle Scholar
  46. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557.PubMedCrossRefGoogle Scholar
  47. Kan G-F, Miao J-L, Shi C-J, Li G-Y (2006) Proteomic alterations of Antarctic ice microalga Chlamydomonas sp. under low-temperature stress. J Integr Plant Physiol 48:965–970.CrossRefGoogle Scholar
  48. Kattner G, Thomas DN, Haas C, Kennedy H, Dieckmann GS (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Mar Ecol Prog Ser 277:1–12.CrossRefGoogle Scholar
  49. Kennedy H, Thomas DN, Kattner K, Haas C, Dieckmann GS (2002) Particulate organic carbon in Antarctic summer sea ice: Concentration and stable carbon isotopic composition. Mar Ecol Prog Ser 238:1–13.CrossRefGoogle Scholar
  50. Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199.CrossRefGoogle Scholar
  51. Kooistra WHCF, Medlin LK (1996) Evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol Phyl Evol 6:391–407.CrossRefGoogle Scholar
  52. Kopczynska EE, Weber LH, El-Sayed SZ (1986) Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean. Polar Biol 6:161–169.CrossRefGoogle Scholar
  53. Krell A (2006) Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Dissertation, University of Bremen, Germany.Google Scholar
  54. Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particles across the ice water interface of melting first-year sea ice in the Laptev Sea (Arctic). Mar Biol 138:173–185.CrossRefGoogle Scholar
  55. Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80.CrossRefGoogle Scholar
  56. Leventer A (1998) The fate of Antarctic “Sea ice diatoms” and their use as paleoenvironmental indicators. Antarct Res Ser 73:121–137.Google Scholar
  57. Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Amer Zoologist 41:57–73.CrossRefGoogle Scholar
  58. Lizotte MP (2003a) Microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea Ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 184–210.Google Scholar
  59. Lizotte MP (2003b) The influence of sea ice on Ross Sea biogeochemical processes. Antarct Res Ser 78:107–122.Google Scholar
  60. Lizotte MP, Priscu JC (1992) Spectral irradiance and biooptical properties in perennial ice-covered lakes of the dry valleys (McMurdo Sound Antarctica). Antarct Res Ser 57:1–14.Google Scholar
  61. Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of microbial eukaryotes in the Arctic Ocean and adjacted seas. Appl Envir Microb 72:3085–3095.CrossRefGoogle Scholar
  62. McKay CP, Andersen D, Pollard WH, Heldmann JL, Doran PT, Fritzen CH, Priscu JC (2005) Polar lakes, streams and springs as analogs for the hydrological cycle on Mars. In: Takano T (ed) Water on Mars and life. Springer, Berlin, pp 219–233.Google Scholar
  63. Merico AT, Tyrell T, Brown CW, Groom SB, Miller PI (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. J Geophys Res Lett 30:1337.CrossRefGoogle Scholar
  64. Mindl B, Anesio AM, Meirer K, Hodson AJ, Laybourn-Parry J, Sommaruga R Sattler B (2007) Factors influencing bacterial dynamics along a transect from supralgacial runoff to proglacial lakes of a high Arctic glacier. FEMS Microbiol Ecol 59:307–317.PubMedCrossRefGoogle Scholar
  65. Mock T, Gradinger R (1999) Determination of ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26.CrossRefGoogle Scholar
  66. Mock T, Kroon BMA (2002a) Photosynthetic energy conversion under extreme conditions. I. Important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51.PubMedCrossRefGoogle Scholar
  67. Mock T, Kroon BMA (2002b) Photosynthetic energy conversion under extreme conditions. II. The significance of lipids at low temperature and low irradiances in Antarctic sea ice diatoms. Phytochemistry 61:53–60.PubMedCrossRefGoogle Scholar
  68. Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741.CrossRefGoogle Scholar
  69. Mock T, Hoch N (2005) Long-term acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosyn Res 85:307–317.PubMedCrossRefGoogle Scholar
  70. Mock T, Thomas DN (2005) Sea ice—recent advances in microbial studies. Environ Microbiol. 7:605–619.PubMedCrossRefGoogle Scholar
  71. Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze–thaw cycles. In: Seckbach J (ed) Extremophilic algae, cyanobacteria and non-photosynthetic protists. Springer, New York, in press.Google Scholar
  72. Mock T, Krell A, Gloeckner G, Kolukisaoglu U, Valentin K (2006) Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. J Phycol 42: 78–85.CrossRefGoogle Scholar
  73. Morgan-Kiss RM, Ivanov AG, Pocock T, Krol M, Gudynaite-Savitch L, Huner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis ETTL (UWO241) (Chorophyceae, Chlorophyta), exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800.CrossRefGoogle Scholar
  74. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microb Mol Biol Rev 70:222–252.CrossRefGoogle Scholar
  75. Nelson DM, Treguer P, Brezezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372.CrossRefGoogle Scholar
  76. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568.PubMedCrossRefGoogle Scholar
  77. Muller T, Bleiss W, Martin C-D, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32.CrossRefGoogle Scholar
  78. Odom OW, Shenkenberg DL, Garcia JA, Herrin DL (2004) A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. RNA 10:1097–1107.PubMedCrossRefGoogle Scholar
  79. Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218.Google Scholar
  80. Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biol 34:215–227.CrossRefGoogle Scholar
  81. Priscu JC (1998) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington DC.Google Scholar
  82. Quillfeldt von CH (2004) The diatom Fragilariopsis cylindrus and its potential as an indicator species for cold water rather than for sea ice. Vie Milieu 54:137–143.Google Scholar
  83. Ralph PJ, McMinn A, Ryan KG, Ashworth C (2005) Short-term effects of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769.CrossRefGoogle Scholar
  84. Remias D, Lutz-Meindl U, Lutz C (2005) Photosynthesis, pigment and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268.CrossRefGoogle Scholar
  85. Ryan KG, Ralph PJ, McMinn A (2004) Photoacclimation of Antarctic bottom ice algal communities to lowered salinities during melting. Polar Biol 27:679–686.CrossRefGoogle Scholar
  86. Rigano VdM, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Envir 29:1400–1409.CrossRefGoogle Scholar
  87. Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. Polar Res 10:69–85.CrossRefGoogle Scholar
  88. Säwström C, Mumford PN, Marshall W, Hodson AJ, Layboum-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard, 79°N). Polar Biol 25:591–596.Google Scholar
  89. Shi H, Lee B, Wu S, Zhu J (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85.PubMedCrossRefGoogle Scholar
  90. Scott FJ, Marchant HJ (2005) Antarctic Marine Protists. Australian Biological Resources Study, Canberra.Google Scholar
  91. Smetacek V (1998) Diatoms and the silicate factor. Nature 391:224–225.CrossRefGoogle Scholar
  92. Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368.PubMedCrossRefGoogle Scholar
  93. Smetacek V, Klaas C, Menden-Deuer S, Rynearson TA (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Sea Res 49:3835–3848.CrossRefGoogle Scholar
  94. Smith WO, Codispoti LA, Nelson DM, Manley T, Buskey EL, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516.CrossRefGoogle Scholar
  95. Schnack-Schiel SB (2003) The macrobiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 211–239.Google Scholar
  96. Sommer U (1989) Maximum growth rates of Antarctic phytoplankton: only weak dependence on cell size. Limnol Oceanogr 34:1109–1112.CrossRefGoogle Scholar
  97. Stoecker DK, Gustafson DE, Merrell JR, Black MMD, Baier CT (1997) Excystment and growth of chryophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. J Phycol 33:585–595.CrossRefGoogle Scholar
  98. Stoecker DK, Gustafson DE, Black MMD, Baier CT (1998) Population dynamics of microalgae in the upper land-fast sea ice at a snow free location. J Phycol 34:60–69.CrossRefGoogle Scholar
  99. Stoecker DK, Gustafson DE, Baier CT, Black MMD (2000) Primary production in the upper sea ice. Aquat Microb Ecol 21:275–287.CrossRefGoogle Scholar
  100. Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high mountain plants. Planta 207:313–324.CrossRefGoogle Scholar
  101. Sutherland P C (1852) Journal of a voyage in Baffin’s Bay and Barrow Straits in the years 1850–51, performed by H.M. ships “Lady Franklin” and “Sophia”, under the command of Mr.William Penny in search of the missing crews of H.M. ships “Erebus” and “Terror”. Vol.s 1 and 2. Longmans, London.Google Scholar
  102. Tang EPY, Vincent WF, Proulx D, Lessard P, Noue JdL (1997) Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. J Appl Phycol 9:371–381.CrossRefGoogle Scholar
  103. Takeuchi N (2002) Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann Glaciol 34:409–414.CrossRefGoogle Scholar
  104. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644.PubMedCrossRefGoogle Scholar
  105. Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. Elsevier, New York.Google Scholar
  106. Weissenberger J, Dieckmann GS, Gradinger R, Spindler M (1992) Sea ice: a cast technique to examine and analyse brine pockets and channel structure. Limnol Oceanogr 37:179–183.CrossRefGoogle Scholar
  107. Werner I (2006) Seasonal dynamics, cryo-pelagic interactions and metabolic rates of Arctic pack-ice and under-ice fauna—a review. Polarforschung 75:1–19.Google Scholar
  108. Williams WE, Gorton HL, Vogelmann TC (2003) Surface gas-exchange processes of snow algae. Proc Natl Acad Sci USA 100:562–566.PubMedCrossRefGoogle Scholar
  109. Willem S, Srahna M, Devos N, Gerday C, Loppes R, Matagne RF (1999) Protein adaptation to low temperatures: a comparative study of alpha-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 3:221–226.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Mock
    • 1
  • David N. Thomas
    • 2
  1. 1.School of OceanographyUniversity of WashingtonSeattleUSA
  2. 2.Ocean Sciences, College of Natural SciencesUniversity of Wales-BangorMenai Bridge, AngleseyUK

Personalised recommendations