Membrane Components and Cold Sensing

  • Nicholas J. Russell

Like all microorganisms, psychrophiles are too small to insulate themselves from the cold or to use avoidance strategies by moving away from thermal extremes. Therefore, the only recourse is to alter their cellular composition. This chapter focuses on the cold adaptation of membranes, particularly how the lipid composition of membranes is changed so that the fluidity and phase properties are retained within functional limits of passive permeability and the activity of integral membrane proteins, including how cold is sensed. Most information concerning cold adaptation of membranes derives from work on bacteria. When possible, comparative information on bacteria, archaea, yeasts, filamentous fungi and algae will be given.


Fatty Acid Composition Membrane Fluidity Cold Shock Fatty Acyl Chain Cold Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cavicchioli R (2006) Cold-adapted archaea. Nature Rev Microbiol 4:331–343.CrossRefGoogle Scholar
  2. Chan M, Himes RH, Akagi JM (1971) Fatty acid composition of thermophilic, mesophilic, and psychrophilic clostridia. J Bacteriol 106:876–881.PubMedGoogle Scholar
  3. Choi K, Heath RJ, Rock CO (2000) C-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in BCFA biosynthesis. J Bacteriol 182:365–370.CrossRefPubMedGoogle Scholar
  4. Cronan JE Jr (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224.CrossRefPubMedGoogle Scholar
  5. Cronan JE Jr, Rock CO (1996) Biosynthesis of membrane lipids. In: Neidhardt FC (ed in chief) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. American Society for Microbiology Press, Washington DC, pp 612–636.Google Scholar
  6. de la Peña E, Mälkiä A, Cabedo H, Belmonte C, Viana F (2005) The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 567:415–426.CrossRefPubMedGoogle Scholar
  7. Evans RI, McClure PJ, Gould GW, Russell NJ (1998) The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum. Int J Food Microbiol 40:159–167.CrossRefPubMedGoogle Scholar
  8. Fulco AJ, Fujii DK (1980) Adaptive regulation of membrane lipid biosynthesis in bacilli by environmental temperature. In: Kates M, Kuksis A (eds) Membrane fluidity. biophysical techniques and cellular regulation. The Humana Press, Clifton, NJ, pp 77–98.Google Scholar
  9. Goldfine H (1984) The control of membrane fluidity in plasmalogen-containing anaerobic bacteria. In: Kates M, Manson LA (eds) Biomembranes, Vol 12, Membrane fluidity. Plenum, New York, pp 349–377.Google Scholar
  10. Goodchild A, Saunders NF, Ertan H, et al. (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321.CrossRefPubMedGoogle Scholar
  11. Härtig C, Loffhagen N, Harms H (2005) Formation of trans fatty aicds is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl Environ Microbiol 71:1915–1922.CrossRefPubMedGoogle Scholar
  12. Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen and Unwin, London.Google Scholar
  13. Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7.CrossRefPubMedGoogle Scholar
  14. Israelachvili JN, Marcˇela S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200.Google Scholar
  15. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302.PubMedGoogle Scholar
  16. Kannenberg EL, Poralla K (1999) Hopanoid biosynthesis and function. Naturwissenschaften 86:168–176.CrossRefGoogle Scholar
  17. Kumar GS, Jagannadham MV, Ray MK (2002) Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J Bacteriol 184:6746–6749.CrossRefPubMedGoogle Scholar
  18. Mansilla MC, de Mendoza D (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235.CrossRefPubMedGoogle Scholar
  19. Marrakchi H, Choi K-H, Rock CO (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptoccoccus pneumoniae. J Biol Chem 277:44809–44816.CrossRefPubMedGoogle Scholar
  20. McElhaney RN (1984) The relationship between membrane lipid fluidity and phase state and the ability of bacteria and mycoplasmas to grow and survive at various temperatures. In: Kates M, Manson LA (eds) Biomembranes, Vol 12, Membrane fluidity. Plenum, New York, pp 433–450.Google Scholar
  21. Methe BA, Nelson KE, Deming JW, et al. (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918.CrossRefPubMedGoogle Scholar
  22. Miller RW, Barran LR (1984) Control of membrane fluidity in Fusarium. In: Kates M, Manson LA (eds) Biomembranes, Vol 12, Membrane fluidity. Plenum, New York, pp 433–450.Google Scholar
  23. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252.CrossRefPubMedGoogle Scholar
  24. Nishihara S, Umemura T, Nara T, Homma M, Kawagishi I (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol 32:357–365.CrossRefGoogle Scholar
  25. Parthasarathy R, Groves JT (2007) Curvature and spatial organization in biological membranes. Soft Matter 3:24–33.CrossRefGoogle Scholar
  26. Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666:88–104.CrossRefPubMedGoogle Scholar
  27. Russell NJ (1984a) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9:108–112.CrossRefGoogle Scholar
  28. Russell NJ (1984b) The regulation of membrane fluidity in bacteria by acyl chain length changes. In: Kates M, Manson LA (eds) Biomembranes, Vol 12, Membrane fluidity. Plenum, New York, pp 329–347.Google Scholar
  29. Russell NJ (1989) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, Vol 2. Academic Press, London, pp 279–365.Google Scholar
  30. Russell NJ (2003) Psychrophily and resistance to low temperatures. In: Encyclopaedia of Life Support Systems. EOLSS Publishers Co Ltd. Published electronically, contribution number 6–73-03–00 @
  31. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767–779.CrossRefPubMedGoogle Scholar
  32. Susuki I, Los DA, Murata N (2000) Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochem Soc Trans UK 28:628–630.CrossRefGoogle Scholar
  33. Watson K (1984) Membrane lipid adaptation in yeast. In: Kates M, Manson LA (eds) Biomembranes, Vol 12, Membrane fluidity. Plenum, New York, pp 517–542.Google Scholar
  34. Zhu K, Ding X, Julotok M, Wilkinson BJ (2005) Exogenous isoleucine and fatty acid shortening ensure the high content of anteiso-C15:0 required for low-temperature growth of Listeria monocytogenes. Appl Environ Microbiol 71:8002–8007.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicholas J. Russell
    • 1
  1. 1.Imperial College LondonWye, Ashford, KentUK

Personalised recommendations