Skip to main content

From Molecular Modeling to Drug Design

  • Chapter
Practical Bioinformatics

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 15))

Today, the pace of genome sequencing rapidly increases the number of protein sequences. This may lead to a description of living organisms at an unprecedented level of both detail and completeness. It will require the characterization of the biophysical properties and of the biological role of each macromolecular assembly. The growing number of known protein sequences largely exceeds the number of protein structures determined experimentally by NMR and X-ray crystallography (Baker and Sali 2001). However, at the same time, new folds are now rarely discovered despite significant efforts to determine structures of unrelated proteins (see CASP5 results).Meanwhile, a huge number of small molecules can now be easily synthesized and tested experimentally thanks to robotics. Libraries of chemical compounds are rapidly growing while the structural, thermodynamic and dynamic characterization of ligand-macromolecule complexes is still tedious and difficult. These observations suggest that new in silico methods (taking advantage of the increasing power of computers) need to be developed in the field of pharmacogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abagyan R, Totrov M, Kuznetsov D (1994) ICM - a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488-506

    Google Scholar 

  • Aloy P, Querol E, Aviles FX, Sternberg MJ (2001) Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. J Mol Biol 311:395-408

    PubMed  Google Scholar 

  • Aloy P, Mas JM, Marti-Renom MA, Querol E, Aviles FX, Oliva B (2000) Refinement of modeled structures by knowledge-based energy profiles and secondary structure prediction:application to the human procarboxypeptidase A2. J Comput Aided Mol Des 14:83-92

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410

    PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

    PubMed  Google Scholar 

  • Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307:447-463

    PubMed  Google Scholar 

  • Bada M, Walther D, Arcangioli B, Doniach S, Delarue M (2000) Solution structural studies and low-resolution model of the Schizosaccharomyces pombe sap1 protein. J Mol Biol 300:563-574

    PubMed  Google Scholar 

  • Bailey TL, Baker ME, Elkan CP. (1997) An artificial intelligence approach to motif discovery in protein sequences: application to steriod dehydrogenases. J Steroid Biochem Mol Biol. 62:29-44

    PubMed  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93-96

    PubMed  Google Scholar 

  • Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G (2001) Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:361-372

    PubMed  Google Scholar 

  • Bhave G, Nadin BM, Brasier DJ, Glauner KS, Shah RD, Heinemann SF, Karim F, Gereau IV RW (2003) Membrane topology of a metabotropic glutamate receptor. J Biol Chem 278:30294-30301

    PubMed  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723-9

    PubMed  Google Scholar 

  • Bissantz C, Bernard P, Hibert M, Rognan D (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets? Proteins 50:5-25

    PubMed  Google Scholar 

  • Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759-4767

    PubMed  Google Scholar 

  • Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61-78

    PubMed  Google Scholar 

  • Bohm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243-256

    PubMed  Google Scholar 

  • Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H,Luebbers T,Meunier-Keller N,Mueller F (2000) Novel inhibitors of DNA gyrase: 3D structure based needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43:2664-2674

    PubMed  Google Scholar 

  • Breinbauer R,Vetter IR,Waldmann H (2002) From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries.Angew Chem Int Ed Engl 41:2879-2890

    PubMed  Google Scholar 

  • Brooijmans N, Kuntz ID (2003) Molecular Recognition and Docking Algorithms. Annu Rev Biophys Biomol Struct 32:335-373

    PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-217

    Google Scholar 

  • Browne WJ,North AC,Phillips DC,Brew K,Vanaman TC,Hill RL (1969) A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme. J Mol Biol. 42:65-86

    PubMed  Google Scholar 

  • Bryant SH, Lawrence CE (1993) An empirical energy function for threading protein sequence through the folding motif Proteins 16:92-112

    PubMed  Google Scholar 

  • Bucurenci N, Sakamoto H, Briozzo P, Palibroda N, Serina L, Sarfati RS, Labesse G, Briand G, Danchin A, Barzu O, Gilles AM (1996) CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases. J Biol Chem 271:2856-2862

    PubMed  Google Scholar 

  • Bujnicki JM, Elofsson A, Fischer D, Rychlewski L (2001) Structure prediction meta server. Bioinformatics 17:750-751

    PubMed  Google Scholar 

  • Bujnicki JM,Elofsson A,Fischer D,Rychlewski L (2001) LiveBench-1: Continuous Bench-marking of structure prediction server. Protein Sci 10:352-361

    PubMed  Google Scholar 

  • Burke DF,Deane CM (2001) CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci 10:599-612

    Google Scholar 

  • Bystroff C, Baker D (1998) Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 281:565-77

    PubMed  Google Scholar 

  • Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997) Deciphering protein sequence information through Hydrophobic Cluster Analysis (HCA) : current status and perspectives. Cell Mol Life Sci 53:621-645

    PubMed  Google Scholar 

  • Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgensen WL (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100-2114

    PubMed  Google Scholar 

  • Carret C, Delbecq S, Labesse G, Carcy B, Precigout E, Moubri K, Schetters TPM, Gorenflot A (1999) Characterization and molecular cloning of an adenosine kinase from Babesia canis rossi. Eur J Biochem 265:1015-1021

    PubMed  Google Scholar 

  • Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42:5100-5109

    PubMed  Google Scholar 

  • Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377-395

    PubMed  Google Scholar 

  • Cohen-Gonsaud M, Ducasse S, Hoh F, Zerbib D, Labesse G, Quémard A (2002) Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. J Mol Biol 320:249-261

    PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2:1511-1519

    PubMed  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147-150

    PubMed  Google Scholar 

  • Combet C, Jambon M, Deleage G, Geourjon C (2002) Geno3D: automatic comparative molecular modeling of protein. Bioinformatics 18:213-214

    PubMed  Google Scholar 

  • Cragg CM, Newman DJ, Snader KM (1997) For an outstanding analysis of the role of natural products in pharmaceuticals. J Nat Prod 60:52-60

    PubMed  Google Scholar 

  • Crawford IP, Niermann T, Kirschner K (1987) Prediction of secondary structure by evolutionary comparison: application to the alpha subunit of tryptophan synthase. Proteins 2:118-129

    PubMed  Google Scholar 

  • Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME (2001) Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure 9:389-397

    PubMed  Google Scholar 

  • De Bakker PI, De Pristo MA, Burke DF, Blundell TL (2003) Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the AMBER force field with the Generalized Born solvation model. Proteins 51:21-40

    PubMed  Google Scholar 

  • Deane CM, Blundell TL (2001) Improved protein loop prediction from sequence alone. Protein Eng 14:473-478

    PubMed  Google Scholar 

  • Deane CM, Kaas Q, Blundell TL (2001) SCORE: predicting the core of protein models. Bioinformatics 17:541-550

    PubMed  Google Scholar 

  • DePristo MA, De Bakker PI, Lovell SC, Blundell TL (2003) Ab initio construction of polypeptide fragments: efficient generation of accurate, representative ensembles. Proteins 51:41-55

    PubMed  Google Scholar 

  • Devos D,Valencia A (2000) Practical limits of function prediction. Proteins 41:98-107

    PubMed  Google Scholar 

  • Diederichs K,Freigang J,Umhau S,Zeth K,Breed J (1998) Prediction by a neural network of outer membrane beta-strand protein topology. Protein Sci 7:2413-2420

    PubMed  Google Scholar 

  • Doman TN,McGovern SL,Witherbee BJ,Kasten TP,Kurumbail R,Stallings WC,Connolly DT, Shoichet BK (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45:2213-2221

    PubMed  Google Scholar 

  • Dominy BN, Brooks CL 3rd (1999) Methodology for protein-ligand binding studies: application to a model for drug resistance, the HIV/FIV protease system. Proteins 36:318-331

    PubMed  Google Scholar 

  • Douguet D, Labesse G (2001) Easier threading through Web-based comparisons and cross-validations. Bioinformatics 17:752-753

    PubMed  Google Scholar 

  • Dunbrack RL Jr, Karplus M (1993) Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol 230:543-74

    PubMed  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396-404.

    PubMed  Google Scholar 

  • Eldridge MD, Murray CW,Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425-445

    PubMed  Google Scholar 

  • Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D (1996) Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J Biol Chem 271:26157-26164

    PubMed  Google Scholar 

  • Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97:9367-9372

    PubMed  Google Scholar 

  • Errami M, Geourjon C, Deleage G (2003) Detection of unrelated proteins in sequences multiple alignments by using predicted secondary structures. Bioinformatics 19:506-512

    PubMed  Google Scholar 

  • Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753-1773

    PubMed  Google Scholar 

  • Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411-428

    PubMed  Google Scholar 

  • Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Fiser A, Pazos F,Valencia A, Sali A, Rost B (2001) EVA: continuous automatic evaluation of structure prediction servers. Bioinformatics 17:1242-1243

    PubMed  Google Scholar 

  • Fetrow JS, Skolnick JA (1998) Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J Mol Biol 281:949-68.

    PubMed  Google Scholar 

  • Feig M, BrooksIII CL, Sali A (2002) Evolution and physics in comparative protein structure modeling.Acc Chem Res 35:413-421

    PubMed  Google Scholar 

  • Flohil JA,Vriend G, Berendsen HJC (2002) Completion and refinement of 3-D homology models with restricted molecular dynamics: Application to targets 47, 58, and 111 in the CASP modeling competition and posterior analysis. Proteins 48:593-604

    PubMed  Google Scholar 

  • Forster MJ (2002) Molecular modeling in structural biology. Micron 33:365-384

    PubMed  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543-548

    PubMed  Google Scholar 

  • Ganem C, Devaux F, Torchet C, Jacq C, Quevillon-Cheruel S, Labesse G, Facca C, Faye G (2003) Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J 22:1588-1598

    PubMed  Google Scholar 

  • Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, et al. (1995) De novo design of enzyme inhibitors by Monte Carlo ligand generation. J Med Chem 38:466-472

    PubMed  Google Scholar 

  • Gershengorn MC, Osman R (2001) Minireview: insights into G protein-coupled receptor function using molecular models. Endocrinology 142:2-10

    PubMed  Google Scholar 

  • Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849-857

    PubMed  Google Scholar 

  • Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recogn 9:1-5

    Google Scholar 

  • Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195-202

    PubMed  Google Scholar 

  • Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337-356

    PubMed  Google Scholar 

  • Gohlke H, Klebe G (2001) Statistical potentials and scoring functions applied to protein-ligand binding. Curr Opin Struct Biol 11:231-235

    PubMed  Google Scholar 

  • Gopal S, Schroeder M, Pieper U, Sczyrba A, Aytekin-Kurban G, Bekiranov S, Fajardo EJ, Eswar N, Sánchez N, Sali A, Gaasterland T (2001) Homology-based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome. Nat Genet 27:337-340

    PubMed  Google Scholar 

  • Gracy J, Chiche L, Sallantin J (1993) Improved alignment of weakly homologous protein sequences using structural information. Protein Eng 6:821-829

    PubMed  Google Scholar 

  • Gruneberg S,Wendt B, Klebe G (2001) Subnanomolar Inhibitors from Computer Screening: A Model Study Using Human Carbonic Anhydrase II. Angew Chem Int Ed Engl 40:389-393

    PubMed  Google Scholar 

  • Grzybowski BA,Ishchenko AV,Kim CY,Topalov G,Chapman R,Christianson DW,Whitesides GM, Shakhnovich EI (2002) Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc Natl Acad Sci USA 99:1270-1276

    PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18:2714-2723

    PubMed  Google Scholar 

  • Hendlich M (1998) Databases for protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 54:1178-1182

    PubMed  Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    PubMed  Google Scholar 

  • Hung IH, Casareno RL, Labesse G, Mathews FS, Gitlin JD (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273:1749-1754

    PubMed  Google Scholar 

  • Hurle MR, Matthews CR, Cohen FE, Kuntz ID, Toumadje A, Johnson WC Jr (1987) Prediction of the tertiary structure of the alpha-subunit of tryptophan synthase.Proteins 2:210-224

    PubMed  Google Scholar 

  • Ilyin VA, Pieper U, Stuart AC, Martí-Renom MA, McMahan L, Sali A (2002) ModView, visualization of multiple protein sequences and structures. Bioinformatics 19:165-166

    Google Scholar 

  • Ishchenko AV, Shakhnovich EI (2002) Small molecule growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 45:2770-2780

    PubMed  Google Scholar 

  • Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ (2003) CAPRI: A critical assessment of predicted interactions. Proteins 52:2-9

    PubMed  Google Scholar 

  • Jenkins JL, Kao RY, Shapiro R (2003) Virtual screening to enrich hit lists from high-throughput screening: a case study on small-molecule inhibitors of angiogenin. Proteins 50:81-93

    PubMed  Google Scholar 

  • Johnson MA, Hoog C, Pinto BM (2003) A novel modeling protocol for protein receptors guided by bound-ligand conformation. Biochemistry 42:1842-1853

    PubMed  Google Scholar 

  • Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287:797-815

    PubMed  Google Scholar 

  • Jones DT (2001) Evaluating the potential of using fold-recognition models for molecular replacement.Acta Crystallogr D Biol Crystallogr 57:1428-1434

    PubMed  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846-856

    PubMed  Google Scholar 

  • Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C,Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 89:2195-2199

    PubMed  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJE (2000) Enhanced Genome Annotation using Structural Profiles in the Program 3D-PSSM. J Mol Biol 299:501-522

    Google Scholar 

  • Kinch LN, Grishin NV (2002) Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity. Proteins 48:75-84

    PubMed  Google Scholar 

  • Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem. 3:928-944.

    PubMed  Google Scholar 

  • Kniazeff J, Galvez T, Labesse G, Pin JP (2002) Ligand binding in the GB2 subunit of the GABAB heteromeric receptor is not required for receptor activation and allosteric interaction between the subunits. J Neurosci 22:7352-7361

    PubMed  Google Scholar 

  • Kollman PA (1993) Free energy calculations: application to chemical and biochemical phenomena. Chem Rev 93:2395-2417

    Google Scholar 

  • Kollman PA (1996) AMBER 5.0. University of California, San Francisco

    Google Scholar 

  • Kuhn B,Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786-3791

    PubMed  Google Scholar 

  • Kuhn B,Kollman PA (2000) A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J Am Chem Soc 122:3909-3916

    Google Scholar 

  • Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server Nucleic Acids Res 31:3305-3307

    PubMed  Google Scholar 

  • Kwasigroch JM, Chomilier J, Mornon JP (1996) A global taxonomy of loops in globular proteins. J Mol Biol 259:855-772

    PubMed  Google Scholar 

  • Labesse G, Vidal-Cros A, Chomilier J, Gaudry M, Mornon JP (1994) Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-oxydoreductases: the single domain reductases/epimerases/dehydrogenases, the ‘RED’ family. Biochemical J 304:95-99

    Google Scholar 

  • Labesse G (1996) MulBlast 1.0: a multiple alignment of BLAST output to boost protein sequence similarity analysis. CABIOS 12:463-467

    PubMed  Google Scholar 

  • Labesse G, Mornon JP (1998) Incremental threading optimization (TITO) to help alignment and modeling of remote homologues. Bioinformatics 14:206-211

    PubMed  Google Scholar 

  • Labesse G, Garnotel E, Bonnel S, Dumas C, Pagés JM, Bolla JM (2001) MOMP a divergent porin from Campylobacter jejuni cloning and primary structural characterization. BBRC 280:380-387

    PubMed  Google Scholar 

  • Labesse G, Bucurenci N, Douguet D, Sakamoto H, Landais S, Gagyi C, Gilles AM, Bârzu O (2002) Comparative modeling and immunochemical studies of Escherichia coli UMP kinase. BBRC 294:173-179

    PubMed  Google Scholar 

  • Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250-1256

    PubMed  Google Scholar 

  • Lewis DFV (2002) modeling human cytochromes P450 involved in drug metabolism from the CYP2C5 crystallographic template. J Inorg BioChem 91:502-514

    PubMed  Google Scholar 

  • Liang S, Grishin NV (2002) Side-chain modeling with an optimized scoring function. Protein Sci 11:322-331

    PubMed  Google Scholar 

  • Lichtarge O,Bourne HR,Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257:342-358

    PubMed  Google Scholar 

  • Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632-5633

    PubMed  Google Scholar 

  • Liu S, Laliberte F, Bobechko B, Bartlett A, Lario P, Gorseth E, Van Hamme J, Gresser MJ, Huang Z (2001) Dissecting the cofactor-dependent and independent bindings of PDE4 inhibitors. Biochemistry 40:10179-10186

    PubMed  Google Scholar 

  • Lorber DM, Udo MK, Shoichet BK (2002) Protein-protein docking with multiple residue conformations and residue substitutions. Protein Sci 11:1393-1408

    PubMed  Google Scholar 

  • Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: An algorithm for the prediction of protein-protein interactions by multimeric threading Proteins 49:350-364

    PubMed  Google Scholar 

  • Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7:1047-1055

    PubMed  Google Scholar 

  • Malherbe P, Kratochwil N, Knoflach F, Zenner MT, Kew JN, Kratzeisen C, Maerki HP, Adam G,Mutel V (2003) Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J Biol Chem 278:8340-8347

    PubMed  Google Scholar 

  • Marrakchi H, Ducasse S, Labesse G, Margeat E, Montrozier H, Emorine L, Charpentier X, Lanéelle G, Quémard A (2002) Biochemical and structural studies of the Mycobacterium tuberculosis MabA (FabG1) protein involved in the fatty acid elongation system FAS-II. Microbiology 148:951-960

    PubMed  Google Scholar 

  • Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291-325

    PubMed  Google Scholar 

  • Martinez AM, Afshar M, Martin F, Cavadore JC, Labbe JC, Doree M (1997) Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J 16:343-354

    PubMed  Google Scholar 

  • McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 11:333-344

    PubMed  Google Scholar 

  • Meinhart A, Silberzahn T, Cramer P (2003) The mRNA transcription/processing factor ssu72 is a potential tyrosine phosphatase. J Biol Chem 278:15917-15921

    PubMed  Google Scholar 

  • Melo F,Sánchez R,Sali A (2002) Statistical potentials for fold assessment.Protein Science 11: 430-448

    PubMed  Google Scholar 

  • Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141-1152

    PubMed  Google Scholar 

  • Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29-34

    PubMed  Google Scholar 

  • Mitchell JBO, Laskowski RA,Alex A, Thornton JM (1999) BLEEP-potential of mean force describing protein-ligand interactions. I. Generating potential. J Comput Chem 20:1165-1176

    Google Scholar 

  • Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics. 14:617-623

    PubMed  Google Scholar 

  • Muegge I (2000) A knowledge-based scoring function for protein-ligand interactions: probing the reference state. Perspect Drug Des Discov 20:99-114

    Google Scholar 

  • Munier-Lehmann H, Chaffotte A, Pochet S, Labesse G (2001) Thymidylate Kinase of Mycobacterium tuberculosis: A chimera sharing properties common to Eucaryotic and bacterial enzymes. Prot Science 10:1195-1205

    Google Scholar 

  • Nussinov R, Wolfson HJ (1999) Efficient computational algorithms for docking and for generating and matching a library of functional epitopes I. Rigid and flexible hinge-bending docking algorithms. Comb Chem High Throughput Screen 2:249-259

    PubMed  Google Scholar 

  • Orengo CA, Todd AE, Thornton JM (1999) From protein structure to function.Curr Opin Struct Biol 9:374-382

    PubMed  Google Scholar 

  • Orning L, Krivi G, Bild G, Gierse J, Aykent S, Fitzpatrick FA (1991a) Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril. J Biol Chem 266:16507-16511

    PubMed  Google Scholar 

  • Orning L, Krivi G, Fitzpatrick FA (1991b) Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. J Biol Chem 266:1375-1378

    PubMed  Google Scholar 

  • Pazos F, Rost B,Valencia A (1999) A platform for integrating threading results with protein family analyses. Bioinformatics 15:1062-1063

    PubMed  Google Scholar 

  • Pei J, Sadreyev R, Grishin NV (2003) PCMA: fast and accurate multiple sequence alignment based on profile consistency. Bioinformatics 19:427-428

    PubMed  Google Scholar 

  • Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG, Pang YP (2000) Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J Med Chem 43:401-408

    PubMed  Google Scholar 

  • Pochet S, Dugue L, Douguet D, Labesse G, Munier-Lehmann H (2002) Nucleoside analogs as inhibitors of Thymidylate Kinases: possible therapeutical applications. ChemBioChem 3:108-110

    PubMed  Google Scholar 

  • Poupon A, Mornon JP (1998) Populations of hydrophobic amino acids within protein globular domains: identification of conserved “topohydrophobic” positions. Proteins 33:329-342

    PubMed  Google Scholar 

  • Rarey M,Wefing S, Lengauer T (1996) Placement of medium-sized molecular fragments into active sites of proteins. J Comput Aided Mol Des 10:41-54

    PubMed  Google Scholar 

  • Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261:731-736

    PubMed  Google Scholar 

  • Reid R, Piagentini M, Rodriguez E, Ashley G, Viswanathan N, Carney J, Santi DV, Hutchinson CR, McDaniel R (2003) A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42:72-79

    PubMed  Google Scholar 

  • Ring CS, Sun E, McKerrow JH, Lee GK, Rosenthal PJ, Kuntz ID, Cohen FE (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA 90:3583-3587

    PubMed  Google Scholar 

  • Rockey WM, Elcock AH (2002) Progress toward virtual screening for drug side effects. Proteins 48:664-671

    PubMed  Google Scholar 

  • Rost B, Sander C (1996) Bridging the protein sequence-structure gap by structure prediction.Annu Rev Biophys Biomol Struct 25:113-136

    PubMed  Google Scholar 

  • Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles. strategies for structural predictions using sequence information. Protein Sci 9:232-241

    PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779-815.

    PubMed  Google Scholar 

  • Sanchez R, Sali A (1999) ModBase: a database of comparative protein structure models. Bioinformatics 15:1060-1061

    PubMed  Google Scholar 

  • Sander C, Schneider R (1991) Database of homology derived protein structures and the structural meaning of sequence alignment. Proteins 9:56-68

    PubMed  Google Scholar 

  • Saveanu C, Miron S, Borza T, Craescu CT, Labesse G, Gagyi C, Popescu A, Schaeffer F, Namane A, Laurent-Winter C, Bârzu O, Gilles AM (2002) Structural and ligand binding properties of YajQ and YnaF, two proteins from Escherichia coli with unknown biological function. Protein Sci 11:2551-2560

    PubMed  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374

    PubMed  Google Scholar 

  • Schafferhans A, Klebe G (2001) Docking ligands onto binding site representations derived from proteins built by homology modeling. J Mol Biol 307:407-427

    PubMed  Google Scholar 

  • Schnecke V, Kuhn LA (2000) Virtual screening with solvation and ligand-induced complementarity. Perspect Drug Discov 20:171-190

    Google Scholar 

  • Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11:739-747

    PubMed  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531-1534

    PubMed  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355-362

    PubMed  Google Scholar 

  • Skolnick J, Kihara D (2001) Defrosting the frozen approximation: PROSPECTOR-a new approach to threading. Proteins 42:319-331

    PubMed  Google Scholar 

  • Smith GR, Sternberg MJ (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12:28-35

    PubMed  Google Scholar 

  • Smith GR, Sternberg MJ (2003) Evaluation of the 3D-Dock protein docking suite in rounds 1 and 2 of the CAPRI blind trial. Proteins 52:74-79

    PubMed  Google Scholar 

  • Srinivasan N,Blundell TL (1993) An evaluation of the performance of an automated procedure for comparative modeling of protein tertiary structure. Protein Eng 6:501-512

    PubMed  Google Scholar 

  • Steele RA, Opella SJ (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36:6885-6895

    PubMed  Google Scholar 

  • Stuart AC, Ilyin VA, Sali A (2002) LigBase: a database of families of aligned ligand binding sites in known protein sequences and structures. Bioinformatics 18:200-201

    PubMed  Google Scholar 

  • Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151-166

    PubMed  Google Scholar 

  • Thunnissen MM, Nordlund P, Haeggstrom JZ (2001) Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat Struct Biol 8:131-135

    PubMed  Google Scholar 

  • Totrov M,Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl 1:215-220

    Google Scholar 

  • Tovchigrechko A, Wells CA, Vakser IA (2002) Docking of protein models. Protein Sci 11:1888-1896

    PubMed  Google Scholar 

  • Trosset JY, Scheraga HA (1999) PRODOCK: software package for protein modeling and docking. J Comput Chem 20:412-427

    Google Scholar 

  • Tuffery P, Etchebest C, Hazout S (1995) Prediction of protein side chain conformations: a study on the influence of backbone accuracy on conformation stability in the rotamer space. Protein Eng 10:361-372

    Google Scholar 

  • Vakser IA (1996) Low-resolution docking: prediction of complexes for underdetermined structures. Biopolymers. 39:455-464

    PubMed  Google Scholar 

  • Venclovas C, Zemla A, Fidelis K, Moult J (2001) Comparison of performance in successive CASP experiments. Proteins 5:163-170

    PubMed  Google Scholar 

  • Wall ME, Subramaniam S, Phillips GN Jr (1999) Protein structure determination using a database of interatomic distance probabilities. Protein Sci 8:2720-2727

    PubMed  Google Scholar 

  • Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124-7129

    PubMed  Google Scholar 

  • Wernimont AK,Huffman DL,Lamb AL,O’Halloran TV,Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766-771

    PubMed  Google Scholar 

  • Wojcik J, Mornon JP, Chomilier J (1999) New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. J Mol Biol 289:1469-1490

    PubMed  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121-131

    PubMed  Google Scholar 

  • Wong CF, McCammon JA (2003) Protein flexibility and computer-aided drug design. Annu Rev Pharmacol Toxicol 43:31-45

    PubMed  Google Scholar 

  • Xu D, Baburaj K, Peterson CB, Xu Y (2001) Model for the three-dimensional structure of vitronectin: predictions for the multi-domain protein from threading and docking. Proteins 44:312-320

    PubMed  Google Scholar 

  • Yao H, Kristensen DM, Mihalek I, Sowa ME, Shaw C, Kimmel M, Kavraki L, Lichtarge O (2003) An accurate, sensitive, and scalable method to identify functional sites in protein structures. J Mol Biol 326:255-261

    PubMed  Google Scholar 

  • Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G (2000) High throughput protein fold identification by using experimental constraints derived from intermolecular cross-links and mass spectrometry. Proc Natl Acad Sci USA 97:5802-5806

    PubMed  Google Scholar 

  • Zamora I, Afzelius L, Cruciani G (2003) Predicting drug metabolism: a site of metabolosim prediction tool applied to the cytochrome P450 2C9. J Med Chem 46:2313-2324

    PubMed  Google Scholar 

  • Zhang Z, Schaffer AA, Miller W, Madden TL, Lipman DJ, Koonin EV, Altschul SF (1998) Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 26:3986-3990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen-Gonsaud, M., Catherinot, V., Labesse, G., Douguet, D. (2008). From Molecular Modeling to Drug Design. In: Bujnicki, J.M. (eds) Practical Bioinformatics. Nucleic Acids and Molecular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74268-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74268-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74267-8

  • Online ISBN: 978-3-540-74268-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics