From Actions to Goals and Vice-Versa: Theoretical Analysis and Models of the Ideomotor Principle and TOTE

  • Giovanni Pezzulo
  • Gianluca Baldassarre
  • Martin V. Butz
  • Cristiano Castelfranchi
  • Joachim Hoffmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4520)


How can goals be represented in natural and artificial systems? How can they be learned? How can they trigger actions? This paper describes, analyses and compares two of the most influential models of goal-oriented behavior: the ideomotor principle (IMP), which was introduced in the psychological literature, and the “test, operate, test, exit” model (TOTE), proposed in the field of cybernetics. This analysis indicates that the IMP and the TOTE highlight complementary aspects of goal-orientedness. In order to illustrate this point, the paper reviews three computational architectures that implement various aspects of the IMP and the TOTE, discusses their main peculiarities and limitations, and suggests how some of their features can be translated into specific mechanisms in order to implement them in artificial intelligent systems.


Teleonomy goal goal selection action triggering feedback anticipation search robotic arms reaching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J.A.: A closed-loop theory of motor learning. Journal of Motor Behavior 3, 111–149 (1971)Google Scholar
  2. 2.
    Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–600 (1999)Google Scholar
  3. 3.
    Butz, M.V.: Anticipatory learning classifier systems. Kluwer Academic Publishers, Boston, MA (2002)zbMATHGoogle Scholar
  4. 4.
    Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation 11, 239–277 (2003)CrossRefGoogle Scholar
  5. 5.
    Butz, M.V., Hoffmann, J.: Anticipations control behavior: Animal behavior in an anticipatory learning classifier system. Adaptive Behavior 10(2), 75–96 (2002)CrossRefGoogle Scholar
  6. 6.
    Butz, M.V., Sigaud, O., Gérard, P.: Internal models and anticipations in adaptive learning systems. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 86–109. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Castelfranchi, C.: Mind as an anticipatory device: For a theory of expectations. In: BVAI 2005, pp. 258–276 (2005)Google Scholar
  8. 8.
    Drescher, G.L.: Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT Press, Cambridge, MA (1991)zbMATHGoogle Scholar
  9. 9.
    Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychological Review 96, 433–458 (1989)CrossRefGoogle Scholar
  10. 10.
    Fogassi, L., Ferrari, P., Chersi, F., Gesierich, B., Rozzi, S., Rizzolatti, G.: Parietal lobe: From action organization to intention understanding. Science 308, 662–667 (2005)CrossRefGoogle Scholar
  11. 11.
    Gallese, V.: The inner sense of action: Agency and motor representations. Journal of Consciousness Studies 7, 23–40 (2000)Google Scholar
  12. 12.
    Gallese, V., Metzinger, T.: Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology 13(3), 365–388 (2003)CrossRefGoogle Scholar
  13. 13.
    Greenwald, A.G.: Sensory feedback mechanisms in performance control: With special reference to the ideomotor mechanism. Psychological Review 77, 73–99 (1970)CrossRefGoogle Scholar
  14. 14.
    Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27(3), 377–396 (2004)Google Scholar
  15. 15.
    Herbart, J.: Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik. Zweiter, analytischer Teil. August Wilhem Unzer, Königsberg, Germany (1825)Google Scholar
  16. 16.
    Hesslow, G.: Conscious thought as simulation of behavior and perception. Trends in Cognitive Sciences 6, 242–247 (2002)CrossRefGoogle Scholar
  17. 17.
    Hoffmann, J.: Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung [Anticipation and cognition: The function of anticipations in human behavioral control and perception]. Hogrefe, Göttingen, Germany (1993)Google Scholar
  18. 18.
    Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 44–65. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Hoffmann, J., Stöcker, C., Kunde, W.: Anticipatory control of actions. International Journal of Sport and Exercise Psychology 2, 346–361 (2004)Google Scholar
  20. 20.
    Hommel, B.: Planning and representing intentional action. The Scientific World JOURNAL 3, 593–608 (2003)Google Scholar
  21. 21.
    Hommel, B., Musseler, J., Aschersleben, G., Prinz, W.: The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Science 24(5), 849–878 (2001)CrossRefGoogle Scholar
  22. 22.
    James, W.: The Principles of Psychology. Dover Publications, New York (1890)Google Scholar
  23. 23.
    Knoblich, G., Prinz, W.: Higher-order motor disorders, chapter Linking perception and action: An ideomotor approach, pp. 79–104. Oxford University Press, Oxford, UK (2005)Google Scholar
  24. 24.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag, Berlin Heidelberg, New York (2001)zbMATHGoogle Scholar
  25. 25.
    Kosslyn, S.: Image and Brain: The Resolution of the Imagery Debate. MIT Press, Cambridge (1994)Google Scholar
  26. 26.
    Meltzoff, A.N., Moore, M.K.: Explaining facial imitation: A theoretical model. Early Development and Parenting 6, 179–192 (1997)CrossRefGoogle Scholar
  27. 27.
    Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior. Rinehart and Winston, New York (1960)Google Scholar
  28. 28.
    Minsky, M.: The Society of Mind. Simon & Schuster (1988)Google Scholar
  29. 29.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge, MA (1990)Google Scholar
  30. 30.
    Ognibene, D., Rega, A., Baldassarre, G.: A model of reaching that integrates reinforcement learning and population encoding of postures. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 381–393. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    O’Regan, J., Noe, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5), 883–917 (2001)Google Scholar
  32. 32.
    Pezzulo, G., Calvi, G.: A schema based model of the praying mantis. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Morocco, D., Miglino, O., Meyer, J.-A. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 211–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Pezzulo, G., Calvi, G., Ognibene, D., Lalia, D.: Fuzzy-based schema mechanisms in akira. In: CIMCA 2005. Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, vol. 2, pp. 146–152. IEEE Computer Society Press, Washington, DC, USA (2005)Google Scholar
  34. 34.
    Pollack, M.E.: Plans as complex mental attitudes. In: Cohen, P.R., Morgan, J., Pollack, M.E. (eds.) Intentions in Communication, pp. 77–103. MIT Press, Cambridge, MA (1990)Google Scholar
  35. 35.
    Prinz, W.: An ideomotor approach to imitation. In: Hurley, S., Chater, N. (eds.) Perspectives on imitation: From neuroscience to social science, vol. 1, pp. 141–156. MIT Press, Cambridge, MA (2005)Google Scholar
  36. 36.
    Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1), 79–87 (1999)CrossRefGoogle Scholar
  37. 37.
    Rizzolatti, G., Arbib, M.A.: Language within our grasp. Trends in Neurosciences 21(5), 188–194 (1998)CrossRefGoogle Scholar
  38. 38.
    Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3 (1996)Google Scholar
  39. 39.
    Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philosophy of Science 10(1), 18–24 (1943)CrossRefGoogle Scholar
  40. 40.
    Roy, D.: Semiotic schemas: A framework for grounding language in action and perception. Artificial Intelligence 167(1-2), 170–205 (2005)CrossRefGoogle Scholar
  41. 41.
    Selfridge, O.: The Mechanisation of Thought Processes, chapter Pandemonium: A paradigm for learning, vol. 10, pp. 511–529. National Physical Laboratory Symposia. Her Majesty’s Stationary Office, London (1959)Google Scholar
  42. 42.
    Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge MA (1998)Google Scholar
  43. 43.
    Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)zbMATHGoogle Scholar
  44. 44.
    Widrow, B., Hoff, M.: Adaptive switching circuits. In: IRE WESCON Convention Record, pp. 96–104, Part 4. (1960)Google Scholar
  45. 45.
    Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)CrossRefGoogle Scholar
  46. 46.
    Wolfe, J.M.: Visual search. In: Pashler, H. (ed.) Attention, University College London Press, London, UK (1996)Google Scholar
  47. 47.
    Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Giovanni Pezzulo
    • 1
  • Gianluca Baldassarre
    • 1
  • Martin V. Butz
    • 2
  • Cristiano Castelfranchi
    • 1
  • Joachim Hoffmann
    • 2
  1. 1.Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche, Via San Martino della Battaglia 44, I-00185 RomaItaly
  2. 2.University of Würzburg, Röontgenring 11, 97070 WürzburgGermany

Personalised recommendations