An Experimental Study of Anticipation in Simple Robot Navigation

  • Birger Johansson
  • Christian Balkenius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4520)

Abstract

This paper presents an experimental study using two robots. In the experiment, the robots navigated through an area with or without obstacles and had the goal to shift places with each other. Four different approaches (random, reactive, planning, anticipation) were used during the experiment and the times to accomplish the task were compared. The results indicate that the ability to anticipate the behavior of the other robot can be advantageous. However, the results also clearly show that anticipatory and planned behavior are not always better than a purely reactive strategy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, R.: Motor schema-based mobile robot navigation. International Journal of Robotics Research 8(4), 92–112 (August 1989)CrossRefGoogle Scholar
  2. 2.
    Balkenius, C.: Natural Intelligence in Artificial Creatures. Lund University Cognitive Studies  37 (1995)Google Scholar
  3. 3.
    Balkenius, C., Johansson, B.: Event prediction and object motion estimation in the development of visual attention, In: Berthouze, L., Kaplan, F., Kozima, H., Yano, H., Konczak, J., Metta, G., Nadel, J., Sandini, G., Stojanov, G., Balkenius, C. (eds.) Fifth International Conference on Epigenetic Robotics, pp. 17–22 (2005)Google Scholar
  4. 4.
    Behnke, S., Egorova, A., Gloye, A., Rojas, R., Simon, M.: Predicting away robot control latency. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 712–719. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boutilier, C.: Planning, learning and coordination in multiagent decision processes. In: Sixth Conference on Theoretical Aspects of Rationality and Knowledge, pp. 195–210 (1996)Google Scholar
  6. 6.
    Brooks, R.A.: Cambrian intelligence: the early history of the new ai. MIT Press, Cambridge (1999)MATHGoogle Scholar
  7. 7.
    Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA 2(1), 14–23 (1986)Google Scholar
  8. 8.
    Brooks, R.A.: Intelligence Without Reason. In: Myopoulos, J., Reiter, R. (eds.) IJCAI 1991. Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, Australia, pp. 569–595. Morgan Kaufmann publishers Inc., San Mateo, CA, USA (1991)Google Scholar
  9. 9.
    Davidsson, P.: Learning by linear anticipation in multi-agent systems. Distributed Artificial Intelligence Meets Machine Learning 1221, 62–72 (1996)Google Scholar
  10. 10.
    Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica 2, 477–521 (April 1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Guo, Y., Parker, L.: A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings IEEE International Conference on Robotics and Automation (2002)Google Scholar
  12. 12.
    Hart, N.J.R.B., Nilsson, P.E.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4 2, 100–107 (1968)CrossRefGoogle Scholar
  13. 13.
    Korein, J.U., Ish-Shalom, J.: Robotics. IBM Systems Journal 1, 96–106 (1987)Google Scholar
  14. 14.
    Laird, J.E.: It knows what you’re going to do: Adding anticipation to a quakebot. In: Proceedings of the Fifth International Conference on Autonomous Agents, Canada, pp. 385–392. ACM Press, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Ledezma, S.A.B.D.A., Aler, R.: Predicting opponent actions by observation, RobuCup 2004, pp. 286–296 (2004)Google Scholar
  16. 16.
    Saad, F.: In-depth analysis of interactions between drivers and the road environment: contribution of on-board observation and subsequent verbal report, In: Proceedings of the 4th Workshop of international cooperation on theories and concepts in traffic safety, University of Lund (1992)Google Scholar
  17. 17.
    Sabanovic, M.M.S.R.S.: Robots in the wild: Observing human-robot social interaction outside the lab. In: International Workshop on Advanced Motion Control, Istanbul, Turkey (March 2006) Google Scholar
  18. 18.
    Sen, S., Sekaran, M., Hale, J.: Learning to coordinate without sharing information. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, 1997, pp. 509–514 (Reprinted from Proceedings of the NationalConference on Artificial Intelligence (1994)Google Scholar
  19. 19.
    Sharifi, H. A. A., Mousavian, M.: Predicting the future state of the robocup simulation environment: heuristic and neural networks approaches,Systems, Man and Cybernetics, vol. 1, pp. 32–27 ( 2003) Google Scholar
  20. 20.
    Stulp, M.B.M., Isik, F.: Implicit coordination in robotic teams using learned prediction models. In: IEEE International Conference on Robotics and Automation (2006)Google Scholar
  21. 21.
    Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W., Kuipers, B.: Integrating topological and metric maps for mobile robot navigation: A statistical approach. In: AAAI/IAAI, pp. 989–995 (1998)Google Scholar
  22. 22.
    Veloso, M., Stone, P., Bowling, M.: Anticipation as a key for collaboration in a team of agents: A case study in robotic soccer. In: Schenker, P.S., McKee, G.T. (eds.) Proceedings of SPIE Sensor Fusion and Decentralized Control in Robotic Systems II, Bellingham, vol. 3839, pp. 134–143 (September 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Birger Johansson
    • 1
  • Christian Balkenius
    • 1
  1. 1.Lunds University Cognitive Science, Kungshuset Lundagård, 222 22 LundSweden

Personalised recommendations