Advertisement

The Interplay of Analogy-Making with Active Vision and Motor Control in Anticipatory Robots

  • Kiril Kiryazov
  • Georgi Petkov
  • Maurice Grinberg
  • Boicho Kokinov
  • Christian Balkenius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4520)

Abstract

This chapter outlines an approach to building robots with anticipatory behavior based on analogies with past episodes. Anticipatory mechanisms are used to make predictions about the environment and to control selective attention and top-down perception. An integrated architecture is presented that perceives the environment, reasons about it, makes predictions and acts physically in this environment. The architecture is implemented in an AIBO robot. It successfully finds an object in a house-like environment. The AMBR model of analogy-making is used as a basis, but it is extended with new mechanisms for anticipation related to analogical transfer, for top down perception and selective attention. The bottom up visual processing is performed by the IKAROS system for brain modeling. The chapter describes the first experiments performed with the AIBO robot and demonstrates the usefulness of the analogy-based anticipation approach.

Keywords

Cognitive modeling Anticipation Analogy-making Top-down Perception Robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hofstadter, D.: Analogy as the Core of Cognition. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science, MIT Press, Cambridge, MA (2001)Google Scholar
  2. 2.
    Holyoak, K., Gentner, D., Kokinov, B.: The Place of Analogy in Cognition. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science, MIT Press, Cambridge, MA (2001)Google Scholar
  3. 3.
    Kokinov, B., French, R.: Computational Models of Analogy-Making. In: Lynn Nadel (ed.) Encyclopedia of Cognitive Science. London: Macmillan, Nature Publishing Group, pp. 113–118 (2002)Google Scholar
  4. 4.
    Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7, 155–170 (1983)CrossRefGoogle Scholar
  5. 5.
    Falkenhainer, B., Forbus, K., Gentner, D.: The structure mapping engine: Algorithm and examples. Artificial Intelligence 41(1), 1–63 (1989)zbMATHCrossRefGoogle Scholar
  6. 6.
    Forbus, K., Gentner, D., Law, K.: MAC/FAC: A model of similarity-based retrieval. Cognitive Science 19(2), 141–205 (1995)CrossRefGoogle Scholar
  7. 7.
    Holyoak, K., Thagard, P.: Analogical mapping by constraint satisfaction. Cognitive Science 13, 295–355 (1989)CrossRefGoogle Scholar
  8. 8.
    Hummel, J., Holyoak, K.: Distributed representation of structure: A theory of analogical access and mapping. Psychological Review 104, 427–466 (1997)CrossRefGoogle Scholar
  9. 9.
    Hofstadter, D.: The Fluid Analogies Research Group: Fluid concepts and creative analogies. Basic Books, New York (1995)Google Scholar
  10. 10.
    Mitchell, M.: Analogy-making as Perception: A computer model. MIT Press, Cambridge, MA (1993)Google Scholar
  11. 11.
    French, R.: The Subtlety of Sameness: A theory and computer model of analogy making. MIT Press, Cambridge, MA (1995)Google Scholar
  12. 12.
    Charlmers, D., French, R., Hofstadter, D.: High- Level Perception, Representation, and Analogy: A Critique of Artificial Intelligence Methodology. Journal of Experimental and Theoretical AI 4(3), 185–211 (1992)CrossRefGoogle Scholar
  13. 13.
    Kokinov, B.: A hybrid model of reasoning by analogy. In: Holyoak, K., Barnden, J. (eds.) Advances in connectionist and neural computation theory: Analogical connections, vol. 2, pp. 247–318. Ablex, Norwood, NJ (1994a)Google Scholar
  14. 14.
    Kokinov, B., Petrov, A.: Dynamic Extension of Episode Representation in Analogy-Making in AMBR. In: Proceedings of the 22nd Annual Conference of the Cognitive Science Society, Erlbaum, Hillsdale (2000)Google Scholar
  15. 15.
    Kokinov, B., Petrov, A.: Integration of Memory and Reasoning in Analogy-Making: The AMBR Model. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind: Perspectives from Cognitive Science, MIT Press, Cambridge, MA (2001)Google Scholar
  16. 16.
    Petrov, A., Kokinov, B.: Processing symbols at variable speed in DUAL: Connectionist activation as power supply. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, (IJCAI-99), pp. 846–851. Morgan Kaufman, San Francisco, CA (1999)Google Scholar
  17. 17.
    Kokinov, B.: The DUAL cognitive architecture: A hybrid multi-agent approach. In: Proceedings of the Eleventh European Conference of Artificial Intelligence, (ECAI-94), John Wiley & Sons, London (1994b)Google Scholar
  18. 18.
    Balkenius, C., Moren, J.: From Isolated Components to Cognitive Systems. ERCIM News 53 (2003)Google Scholar
  19. 19.
    Balkenius, C., Moren, J., Johansson, B.: System-Level Cognitive Modeling with Ikaros. Lund University Cognitive Studies 133 (2007)Google Scholar
  20. 20.
    Petkov, G., Naydenov, C., Grinberg, M., Kokinov, B.: Building Robots with Analogy-Based Anticipation. In: Proceedings of the KI 2006, 29th German Conference on Artificial Intelligence, Bremen, 2006 (in press)Google Scholar
  21. 21.
    Duncan, J.: Selective attention and the organization of visual information. Journal of Experimental Psychology: General 113, 501–517 (1984)CrossRefGoogle Scholar
  22. 22.
    Chalmers, D., French, R., Hofstadter, D.: High-level perception, representation, and analogy: A critique of artificial intelligence methodology. Journal for Experimental and Theoretical Artificial Intelligence 4, 185–211 (1992)CrossRefGoogle Scholar
  23. 23.
    Dacey, D.M.: Circuitry for Color Coding in the Primate Retina. Proceedings of the National Academy of Sciences 93, 582–588 (1996)CrossRefGoogle Scholar
  24. 24.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1), 215–243 (1968)Google Scholar
  25. 25.
    Paradiso, M.A., Nakayama, K.: Brightness perception and filling-in. Vision Research 31, 1221–1236 (1991)CrossRefGoogle Scholar
  26. 26.
    Grossberg, S.: The complementary brain: unifying brain dynamics and modularity. Trends in Cognitive Sciences 4, 233–246 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kiril Kiryazov
    • 1
  • Georgi Petkov
    • 1
  • Maurice Grinberg
    • 1
  • Boicho Kokinov
    • 1
  • Christian Balkenius
    • 2
  1. 1.Central and East European Center for Cognitive Science, New Bulgarian University, 21 Montevideo Street, Sofia 1618Bulgaria
  2. 2.Cognitive Science, Lund University, Kungshuset, Lundagård SE-222 22 LUNDSweden

Personalised recommendations