Skip to main content

On the Topological Complexity of Weakly Recognizable Tree Languages

  • Conference paper
Fundamentals of Computation Theory (FCT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4639))

Included in the following conference series:

Abstract

We show that the family of tree languages recognized by weak alternating automata is closed by three set theoretic operations that correspond to sum, multiplication by ordinals < ω ω, and pseudo-exponentiation with the base ω 1 of the Wadge degrees. In consequence, the Wadge hierarchy of weakly recognizable tree languages has the height of at least ε 0, that is the least fixed point of the exponentiation with the base ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, A., Niwiński, D.: Continuous separation of game languages. Manuscript, 2006 (submitted)

    Google Scholar 

  2. Duparc, J.: Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank. The Journal of Symbolic Logic 66 (2001)

    Google Scholar 

  3. Duparc, J.: A hierarchy of deterministic context-free ω-languages. Theoret. Comput. Sci. 290, 1253–1300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Finkel, O.: Wadge Hierarchy of Omega Context Free Languages. Theoret. Comput. Sci. 269, 283–315 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics 156 (1995)

    Google Scholar 

  6. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata. The weak monadic theory of the tree, and its complexity. In: Kott, L. (ed.) Automata, Languages and Programming. LNCS, vol. 226, pp. 275–283. Springer, Heidelberg (1986)

    Google Scholar 

  7. Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Murlak, F.: The Wadge hierarchy of deterministic tree languages. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 408–419. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theoret. Comput. Sci. 303, 215–231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic tree automata. In: Proc. WoLLiC 2004. Electronic Notes in Theoret. Comp. Sci., pp. 195–208 (2005)

    Google Scholar 

  11. Perrin, D., Pin, J.-E.: Infinite Words. Automata, Semigroups, Logic and Games. In: Pure and Applied Mathematics, vol. 141, Elsevier, Amsterdam (2004)

    Google Scholar 

  12. Rabin, M.O.: Weakly definable relations and special automata. In: Mathematical Logic and Foundations of Set Theory, North-Holland, pp. 1–70 (1970)

    Google Scholar 

  13. Selivanov, V.: Wadge Degrees of ω-languages of deterministic Turing machines. Theoret. Informatics Appl. 37, 67–83 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees. Theoret. Comput. Sci. 112, 413–418 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Urbański, T.F.: On deciding if deterministic Rabin language is in Büchi class. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 663–674. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen. J. Inf. Process. Cybern. EIK 13, 473–487 (1977)

    MATH  Google Scholar 

  17. Wagner, K.: On ω-regular sets. Inform. and Control 43, 123–177 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erzsébet Csuhaj-Varjú Zoltán Ésik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duparc, J., Murlak, F. (2007). On the Topological Complexity of Weakly Recognizable Tree Languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds) Fundamentals of Computation Theory. FCT 2007. Lecture Notes in Computer Science, vol 4639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74240-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74240-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74239-5

  • Online ISBN: 978-3-540-74240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics