Skip to main content

Circuit Simulation for Nanoelectronics

  • Chapter
From Nano to Space
  • 1181 Accesses

Abstract

Though electronics is a quite young field, it is found almost everywhere in nowadays life. It became an important industrial sector within a short time frame. Behind this success story, very advanced research is necessary to push further the possibilities of the technology. This led to decreasing dimensions, from millimeters in the 1950s to nanometers in current products. To emphasize the new challenges due to the small sizes, the term “nanoelectronics” was coined. One important field of nanoelectronics is circuit simulation which is strongly connected to numerical mathematics. This paper highlights with some examples the interaction between actual and future problems of nanoelectronics and their relation to mathematical research. It is shown that without significant progress of mathematics the simulation problems showing up cannot be solved any more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel, A.: Partial differential-algebraic models in chip design — thermal and semiconductor problems. PhD. thesis, University Karlsruhe. De Fortschritt-Berichte VDI, Reihe 20, Nr. 391, VDI-Verlag Düsseldorf, 2004.

    Google Scholar 

  2. Berry, M., Pulatova, S., Stewart, G.: Algorithm 844: Computing sparse reduced-rank approximations to sparse matrices. ACM Trans. Math. Software 31, 252–269 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. BSIM4 manual. Department of Electrical Engineering and Computer Science, University of California, Berkeley (2000). http://wwwdevice.EECS.Berkeley.EDU/?bsim/

  4. Buckwar, E., Winkler, R.: Multi-step methods for SDEs and their application to problems with small noise. SIAM J. Num. Anal., (44), 779–803 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. COMSON — COupled Multiscale Simulation and Optimization in Nanoelectronics. Homepage at http://www.comson.org/

  6. de Falco, C.: Quantum corrected drift-diffusion models and numerical simulation of nanoscale semiconductor devices. PhD. thesis, University of Milano, Italy, 2005.

    Google Scholar 

  7. de Falco, C., Denk, G., Schultz, R.: A demonstrator platform for coupled multiscale simulation. In: Ciuprina, G., Ioan, D. (eds) Scientific Computing in Electrical Engineering, 63–71, Springer, 2007.

    Google Scholar 

  8. Denk, G., Meintrup, D., Schäffler, S.: Transient noise simulation: Modeling and simulation of 1/f-noise. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation and Optimization of Integrated Circuits. ISNM Vol. 146, 251–267, Birkhäuser, Basel, (2003)

    Google Scholar 

  9. Denk, G., Schäffler, S.: Adams methods for the efficient solution of stochastic differential equations with additive noise. Computing, 59, 153–161 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ebers, J.J., Moll, J.L.: Large signal behaviour of junction transistors. Proc. IRE, 42, 1761–1772 (1954)

    Article  Google Scholar 

  11. Estévez Schwarz, D., Feldmann, U.: Actual problems in circuit simulation. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation and Optimization of Integrated Circuits. ISNM Vol. 146, 83–99, Birkhäuser, Basel, (2003)

    Google Scholar 

  12. Feldmann, P., Liu, F.: Sparse and efficient reduced order modeling of linear subcircuits with large number of terminals. In: Proc. Intl. Conf. on CAD, San Jose, November 2004, 88–92 (2004)

    Google Scholar 

  13. Gear, W.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory, CT-18, 89–95 (1971)

    Article  Google Scholar 

  14. Günther, M., Rentrop, P.: Multirate ROW methods and latency of electric circuits. Appl. Numer. Math., 13, 83–102 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Günther, M.: Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen. network equations in chip design. Fortschritt-Berichte VD, Reihe 20, Nr. 343, VDI-Verlag Düsseldorf, 2001.

    Google Scholar 

  16. Gummel, H.K., Poon, H.C.: An Integral Charge Control Model of Bipolar Transistors. Bell Syst. Techn. J., 49, 827–852 (1970)

    Google Scholar 

  17. International Technology Roadmap for Semiconductors (ITRS), Edition 2005. Available at http://www.itrs.net/

  18. Kahlert, M.: Reduktion parasitärer Schaltungselemente unter Verwendung der Spektralzerlegung. PhD. thesis, Technische Universität München, Germany, 2002.

    Google Scholar 

  19. Marmiroli, A., Carnevale, G., Ghetti, A.: Technology and device modeling in micro and nano-electronics: Current and future challenges. In: Ciuprina, G., Ioan, D. (eds) Scientific Computing in Electrical Engineering, 41–54, Springer, 2007.

    Google Scholar 

  20. Meyer, J.E.: MOS models and circuit simulation. RCA Rev. 32, 42–63 (1971)

    Google Scholar 

  21. Montrone, F.: Ein robustes adaptives Verfahren zur numerischen Lösung der partiellen Differentialgleichungen bei elektronischen Bauelementen in drei Raumdimensionen. PhD. thesis, Technische Universität München, Germany 1995.

    Google Scholar 

  22. Penski, Chr.: Numerische Integration stochastischer differential-algebraischer Gleichungen in elektrischen Schaltungen. PhD. thesis, Technische Universität München, Germany, 2002.

    Google Scholar 

  23. Perry, T.: Donald O. Pederson. IEEE Spectrum, June 1998, 22–27

    Google Scholar 

  24. Pulch, R.: Transformation qualities of warped multirate partial differential algebraic equations. This issue, 27–42.

    Google Scholar 

  25. Shichman, H., Hodges, D.A.: Insulated-gate field-effect transistor switching circuits. IEEE J. Solid State Circuits, SC-3, 285–289 (1968)

    Article  Google Scholar 

  26. Sickenberger, T., Winkler, R.: Efficient transient noise analysis in circuit simulation. PAMM, 6, 55–58 (2006)

    Article  Google Scholar 

  27. Striebel, M.: Hierarchical mixed multirating for distributed integration of DAE network equations in chip design. PhD. thesis, University of Wuppertal. De Fortschritt-Berichte VDI, Reihe 20, Nr. 404, VDI-Verlag Düsseldorf, 2006.

    Google Scholar 

  28. Tischendorf, C.: Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis. Habil. thesis, Humboldt-Universität, Berlin, 2003.

    Google Scholar 

  29. Thurner, M., Selberherr, S.: The extension of MINIMOS to a three dimensional simulation program. Proc. NASECODE V Conf, 327–332 (1987)

    Google Scholar 

  30. Winkler, R.: Stochastic differential algebraic equations of index 1 and applications in circuit simulation. J. Comp. Appl. Math., 157, 477–505 (2003)

    Google Scholar 

  31. Wong, H.-S.: Beyond the conventional transistor. IBM Journal of Research and Development, 46, 133–167 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denk, G., Feldmann, U. (2008). Circuit Simulation for Nanoelectronics. In: Breitner, M.H., Denk, G., Rentrop, P. (eds) From Nano to Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74238-8_3

Download citation

Publish with us

Policies and ethics