Skip to main content

Intrusive versus Non-Intrusive Methods for Stochastic Finite Elements

  • Chapter
From Nano to Space

Abstract

In this paper we compare an intrusive with an non-intrusive method for computing Polynomial Chaos expansions. The main disadvantage of the nonintrusive method, the high number of function evaluations, is eliminated by a special Adaptive Gauss-Quadrature method. A detailed efficiency and accuracy analysis is performed for the new algorithm. The Polynomial Chaos expansion is applied to a practical problem in the field of stochastic Finite Elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Loh: On Latin hypercube sampling, Ann. Stat. 24 2058–2080 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  2. B. L. Fox: Strategies for Quasi-Monte Carlo, Springer, (1999).

    Google Scholar 

  3. N. N. Madras: Lectures on Monte Carlo Methods, American Mathematical Society, (2002).

    Google Scholar 

  4. M. Rajaschekhar, B. Ellingwood: A new look at the response surface approach for reliability analysis, Struc. Safety 123 205–220 (1993).

    Article  Google Scholar 

  5. R. G. Ghanem, P. D. Spanos: Stochastic Finite Elements. A Spectral Approach., Springer, Heidelberg, (1991).

    Google Scholar 

  6. D. Xiu, G. E. Karniadakis: The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM Journal on Scientific Computing 24(2) 619–644 (2003).

    Article  MathSciNet  Google Scholar 

  7. G. Karniadakis, C.-H. Su, D. Xiu, D. Lucor, C. Schwab, R. Todor: Generalized Polynomial Chaos Solution for Differential Equations with Random Inputs, ETH Zürich, Seminar für Angewandte Mathematik Research Report No. 01 (2005).

    Google Scholar 

  8. M. Schevenels, G. Lombaert, G. Degrande: Application of the stochastic finite element method for Gaussian and non-Gaussian systems, in: ISMA, Katholieke Universiteit Leuven, Belgium, (2004).

    Google Scholar 

  9. M. Jardak, C.-H. Su, G. E. Karniadakis: Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation, Journal of Scientific Computing 17 319–338 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. O. P. L. Maître, O. M. Knio, H. N. Najm, R. G. Ghanem: A Stochastic Projection Method for Fluid Flow I. Basic Formulation, Journal of Computational Physics 173 481–511 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Lucor, G. E. Karniadakis: Noisy Inflows Cause a Shedding-Mode Switching in Flow Past an Oscillating Cylinder, Physical Review Letters 92 154501 (2004).

    Article  Google Scholar 

  12. N. Wiener: The Homogeneous Chaos, Amer. J. Math. 60 897–936 (1938).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Cameron, W. Martin: The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. Math. 48 385 (1947).

    Article  MathSciNet  Google Scholar 

  14. M. Herzog: Zur Numerik von stochastischen Störungen in der Finiten Elemente Methode, Master’s thesis, TU München (2005).

    Google Scholar 

  15. D. Xiu, G. E. Karniadakis: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg. 191 4927–4948 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Ghanem, S. Masri, M. Pellissetti, R. Wolfe: Identification and prediction of stochastic dynamical systems in a polynomial chaos basis, Comput. Methods Appl. Mech. Engrg. 194 1641–1654 (2005).

    Article  MATH  Google Scholar 

  17. M. Paffrath, U. Wever: The Probabilistic Optimizer RODEO, Internal Report Siemens AG (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzog, M., Gilg, A., Paffrath, M., Rentrop, P., Wever, U. (2008). Intrusive versus Non-Intrusive Methods for Stochastic Finite Elements. In: Breitner, M.H., Denk, G., Rentrop, P. (eds) From Nano to Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74238-8_13

Download citation

Publish with us

Policies and ethics