Encouraging Cooperation in Sharing Supermodular Costs

(Extended Abstract)
  • Andreas S. Schulz
  • Nelson A. Uhan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4627)

Abstract

We study the computational complexity and algorithmic aspects of computing the least core value of supermodular cost cooperative games, and uncover some structural properties of the least core of these games. We provide motivation for studying these games by showing that a particular class of optimization problems has supermodular optimal costs. This class includes a variety of problems in combinatorial optimization, especially in machine scheduling. We show that computing the least core value of supermodular cost cooperative games is NP-hard, and design approximation algorithms based on oracles that approximately determine maximally violated constraints. We apply our results to schedule planning games, or cooperative games where the costs arise from the minimum sum of weighted completion times on a single machine. By improving upon some of the results for general supermodular cost cooperative games, we are able to give an explicit formula for an element of the least core of schedule planning games, and design a fully polynomial time approximation scheme for computing the least core value of these games.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruno, J., Coffman, E.G., Sethi, R.: Scheduling independent tasks to reduce mean finishing time. Communications of the ACM 17, 382–387 (1974)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Curiel, I., Pederzoli, G., Tijs, S.: Sequencing games. European Journal of Operational Research 40, 344–351 (1989)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Faigle, U., Fekete, S.P., Hochstättler, W., Kern, W.: On approximately fair cost allocation for Euclidean TSP games. OR Spektrum 20, 29–37 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Faigle, U., Kern, W.: Approximate core allocation for binpacking games. SIAM Journal on Discrete Mathematics 11, 387–399 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Faigle, U., Kern, W., Paulusma, D.: Note on the computational complexity of least core concepts for min-cost spanning tree games. Mathematical Methods of Operations Research 52, 23–38 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics, vol. 58. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237–267 (1976)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gillies, D.B.: Solutions to general non-zero-sum games. In: Tucker, A.W., Luce, R.D. (eds.) Contributions to the Theory of Games, Volume IV. Annals of Mathematics Studies, vol. 40, pp. 47–85. Princeton University Press, Princeton (1959)Google Scholar
  9. 9.
    Goemans, M.X., Queyranne, M., Schulz, A.S., Skutella, M., Wang, Y.: Single machine scheduling with release dates. SIAM Journal on Discrete Mathematics 15, 165–192 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goemans, M.X., Skutella, M.: Cooperative facility location games. Journal of Algorithms 50, 194–214 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Granot, D., Huberman, G.: Minimum cost spanning tree games. Mathematical Programming 21, 1–18 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Håstad, J.: Some optimal inapproximability results. In: Proceedings of the 29th ACM Symposium on Theory of Computing, 1997, pp. 1–10. ACM Press, New York (1997)Google Scholar
  15. 15.
    Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of cross-monotonic cost sharing schemes. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 602–611. ACM Press, New York (2005)Google Scholar
  16. 16.
    Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Mathematics of Operations Research 28, 294–308 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Maniquet, F.: A characterization of the Shapley value in queueing problems. Journal of Economic Theory 109, 90–103 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus, and related solution concepts. Mathematics of Operations Research 4, 303–338 (1979)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mishra, D., Rangarajan, B.: Cost sharing in a job scheduling problem using the Shapley value. In: Proceedings of the 6th ACM Conference on Electronic Commerce, 2005, pp. 232–239. ACM Press, New York (2005)Google Scholar
  20. 20.
    Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 584–593. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  21. 21.
    Potters, J., Curiel, I., Tijs, S.: Traveling salesman games. Mathematical Programming 53, 199–211 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Queyranne, M.: Structure of a simple scheduling polyhedron. Mathematical Programming 58, 263–285 (1993)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Queyranne, M., Schulz, A.S.: Scheduling unit jobs with compatible release dates on parallel machines with nonstationary speeds. In: Balas, E., Clausen, J. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 920, pp. 307–320. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. 24.
    Sahni, S.: Algorithms for scheduling independent tasks. Journal of the ACM 23, 116–127 (1976)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schuurman, P., Woeginger, G.J.: Approximation schemes - a tutorial. In: Möhring, R.H., Potts, C.N., Schulz, A.S., Woeginger, G.J., Wolsey, L.A. (eds.) Preliminary version of a chapter for “Lectures on Scheduling”Google Scholar
  26. 26.
    Shapley, L.S.: Cores of convex games. International Journal of Game Theory 1, 11–26 (1971)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Shapley, L.S., Shubik, M.: Quasi-cores in a monetary economy with nonconvex preferences. Econometrica 34, 805–827 (1966)CrossRefMATHGoogle Scholar
  28. 28.
    Shapley, L.S., Shubik, M.: The assignment game I: the core. International Journal of Game Theory 1, 111–130 (1971)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Smith, W.E.: Various optimizers for single-stage production. Naval Research Logistics Quarterly 3, 59–66 (1956)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas S. Schulz
    • 1
  • Nelson A. Uhan
    • 2
  1. 1.Sloan School of Management, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E53-361, Cambridge, MA 02139USA
  2. 2.Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E40-130, Cambridge, MA 02139USA

Personalised recommendations