Skip to main content

Bayesian Inference for Layer Representation with Mixed Markov Random Field

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4679))

Abstract

This paper presents a Bayesian inference algorithm for image layer representation [26], 2.1D sketch [6], with mixed Markov random field. 2.1D sketch is an very important problem in low-middle level vision with a synthesis of two goals: segmentation and 2.5D sketch, in other words, it is to consider 2D segmentation by incorporating occulision/depth explicitly to get the partial order of final segmented regions and contour completion in the same layer. The inference is based on Swendsen-Wang Cut (SWC) algorithm [4] where there are two types of nodes, instead of all nodes being the same type in traditional MRF model, in the graph representation: atomic regions and their open bonds desribed by address variables. These makes the problem a mixed random field. Therefore, two kinds of energies should be simultaneously minimized by maximizing a joint posterior probability: one is for region coloring/layering, the other is for the assignments of address variables. Given an image, its primal sketch is computed firstly, then some atomic regions can be obtained by completing some sketches into a closed contour. At the same time, T-junctions are detected and broken into terminators as the open bonds of atomic regions after being assigned the ownership between them and atomic regions. With this graph representation, the presented inference algorithm is performed and satisfactory results are shown in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guo, C.E., Zhu, S.C., Wu, Y.N.: Modeling visual patterns by integrating descriptive and generative models. IJCV 53(1), 5–29 (2003)

    Article  Google Scholar 

  2. Guo, C.E., Zhu, S.C., Wu, Y.N.: Primal sketch: integrating texture and structure. In: Proc. Int’l. Conf. on Computer Vision (2003)

    Google Scholar 

  3. Barbu, A., Zhu, S.C.: Graph Partition by Swendsen-Wang Cuts. In: Proc. Int’l. Conf. on Computer Vision (2003)

    Google Scholar 

  4. Barbu, A., Zhu, S.C.: Generalizing Swendsen-Wang to Sampling Arbitrary Posterior Probabilities. IEEE Trans. on PAMI 27, 1239–1253 (2005)

    Google Scholar 

  5. Marr, D.: Vision. Freeman Publisher, San Francisco (1983)

    Google Scholar 

  6. Nitzberg, M., Shiota, T., Mumford, D.: Filtering, Segmentation and Depth. LNCS, vol. 662. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  7. Eseddoglu, S.: Segment Image With Depth but Without Detecting Junction. Journal of Mathematical Imaging and Vision 18 (2003)

    Google Scholar 

  8. Yu, S.X., Lee, T.S., Kanade, T.: A Hierarchical Markov Random Field Model for Figure-Ground Segregation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 118–133. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Chan, T., Shen, J.: Mathematical Models for Local Nontexture Inpaintings. SIAM Journal of Applied Mathematics 62, 1019–1043 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bertalmio, M., Sapiro, G., Ballester, C.: Image Inpainting.Computer, Graphics, SIGGRAPH (2000)

    Google Scholar 

  11. Joyeux, L., Buisson, O., Besserer, B.: Detection and Removal of Line Scratches in Motion Picture Films. In: Proceedings of CVPR 1999. IEEE Int. Conf. on Computer Vision and Pattern Recognition, FortCollins (1999)

    Google Scholar 

  12. Joshi, S., Srivastava, A., Mio, W.: Hierarchical Organization of Shapes for Efficient Retrieval. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 570–591. Springer, Heidelberg (2004)

    Google Scholar 

  13. Kumar, M.P., Torr, Zisserman, P.H.S.: Obj. Cut. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 3 (2005)

    Google Scholar 

  14. Authors from the same group: Compositional boosting for computing hierarchical image structures. In: CVPR 2007 (submitted, 2007)

    Google Scholar 

  15. Kimia, B.B., Frankel, I., Popescu, A.M.: Euler spiral for shape completion. International journal of computer vision 54, 159–182 (2003)

    Article  MATH  Google Scholar 

  16. Mumford, D., Shah, J.: Optimal approximations of piecewise smooth functions ans associated variatioanl problems. Comm. in pure and appl. Math 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Saund, E.: Perceptual organization of occluding contours generated by opaque surfaces. CVPR 19999, 624–630 (1999)

    Google Scholar 

  18. Shum, H.: Prior, Context and Interactive Computer Vision. The Microsoft Research Asia Technical Report (2006)

    Google Scholar 

  19. Horn, B.K.P.: The curve of least energy. ACM Transactions on Mathematical Software 9, 441–460 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ballester, C., Bertalmio, M., Caselles, V.: Filling-In by Joint Interpolation of Vector Fields and Gray Levels. IEEE Transactions on Image Processing 10, 1200–1211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Minimized via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 147–159 (2004)

    Article  Google Scholar 

  22. Fridman, A.: Mixed Markov models. Applied mathematics. PNAS 100(14), 8092–8096 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gilks, W.R., Richardson, S., Spiegelhalter: Markov Chain Monte Carlo In practive. Chapman and Hall, Sydney (1996)

    Google Scholar 

  24. Saund, E.: Perceptual organization of occluding contours generated by opaque surfaces. In: Proceedings of the 1999 Conference on Computer Vision and Pattern Recognition, pp. 624–630 (1999)

    Google Scholar 

  25. Geiger, D., Kumaran, K., Parida, L.: Visual organization for figure/ground separation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 155–160 (1996)

    Google Scholar 

  26. Adelson, E.A., Wang, J.Y.A.: Representing Moving Images with Layers. IEEE Trans. on Image Processing 3, 625–638 (1994)

    Article  Google Scholar 

  27. Wang, J., Gu, E., Betke, M.: MosaicShape: Stochastic Region Grouping with Shape Prior. Computer Vision and Pattern Recognition 1, 902–908 (2005)

    Google Scholar 

  28. Efros, A.A., Freeman, W.T.: Image Quilting for Texture Synthesis and Transfer. In: Proceedings of SIGGRAPH 2001, Los Angeles, California, (August 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan L. Yuille Song-Chun Zhu Daniel Cremers Yongtian Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, RX., Wu, TF., Zhu, SC., Sang, N. (2007). Bayesian Inference for Layer Representation with Mixed Markov Random Field. In: Yuille, A.L., Zhu, SC., Cremers, D., Wang, Y. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2007. Lecture Notes in Computer Science, vol 4679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74198-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74198-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74195-4

  • Online ISBN: 978-3-540-74198-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics