Skip to main content

New Perspectives for Addressing Patterns of Secondary Metabolites in Marine Macroalgae

  • Chapter
Algal Chemical Ecology

Natural products can structure relationships between organisms, affect resource allocation, influence competition, mediate species distributions, and select for traits leading to the potential diversification of species (e.g. see reviews by McClintock and Baker 2001; Potin et al. 2002; Pohnert 2004; Ianora et al. 2006). Although there have been numerous efforts to determine patterns of metabolite distribution in marine ecosystems, particularly in macroalgae, these efforts have focused primarily on a macroscale: global patterns, patterns within specific habitats (e.g. the intertidal zone), and patterns correlated with changes in biotic and abiotic factors. Work in terrestrial ecosystems has led to the development of ecological models that describe trade-offs, costs, and benefits, and have been applied to marine algal systems (e.g. Cronin 2001; Jormalainen et al. 2003; Honkanen and Jormalainen 2005; Dworjanyn et al. 2006b; Ianora et al. 2006). However, the response of algal secondary metabolites to stimuli is a complex process, and these models do not consistently predict patterns of macroalgal metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    PubMed  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    PubMed  CAS  Google Scholar 

  • Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408

    Google Scholar 

  • Arnold TM, Targett NM, Tanner CE, Hatch WI, Ferrari KE (2001) Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). J Phycol 37:1026–1029

    CAS  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York

    Google Scholar 

  • Berry JP, Reece KS, Rein KS, Baden DG, Haas LW, Ribeiro WL, Shields JD, Snyder RV, Vogelbein WK, Gawley RE (2002) Are Pfiesteria species toxicogenic? Evidence against production of ichthyotoxins by Pfiesteria shumwayae. Proc Natl Acad Sci USA 99:10970–10975

    PubMed  CAS  Google Scholar 

  • Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Springer, New York

    Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78

    PubMed  CAS  Google Scholar 

  • Boettcher AA, Targett NM (1993) Role of polyphenolic molecular-size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74:891–903

    CAS  Google Scholar 

  • Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative burst in plants. Free Radical Res 23:517–532

    CAS  Google Scholar 

  • Boonprab K, Matsui K, Akakabe Y, Yotsukura N, Kajiwara T (2003) Hydroperoxy-arachidonic acid mediated n-hexanal and (Z)-3- and (E)-2-nonenal formation in Laminaria angustata. Phytochemistry 63:669–678

    PubMed  CAS  Google Scholar 

  • Borell EM, Foggo A, Coleman RA (2004) Induced resistance in intertidal macroalgae modifies feeding behaviour of herbivorous snails. Oecologia 140:328–334

    PubMed  Google Scholar 

  • Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaun JP, Potin P (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol 135:1838–1848

    PubMed  CAS  Google Scholar 

  • Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650

    PubMed  CAS  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    CAS  Google Scholar 

  • Ceh J, Molis M, Dzeha TM, Wahl M (2005) Induction and reduction of anti-herbivore defenses in brown and red macroalgae off the Kenyan coast. J Phycol 41:726–731

    Google Scholar 

  • Cetrulo GL, Hay ME (2000) Activated chemical defenses in tropical versus temperate seaweeds. Mar Ecol Prog Ser 207:243–253

    CAS  Google Scholar 

  • Chikaraishi Y (2006) Carbon and hydrogen isotopic composition of sterols in natural marine brown and red macroalgae and associated shellfish. Org Geochem 37:428–436

    CAS  Google Scholar 

  • Cimino G, Crispino A, Dimarzo V, Gavagnin M, Ros JD (1990) Oxytoxins, bioactive molecules produced by the marine opisthobranch mollusk Oxynoe olivacea from a diet-derived precursor. Experientia 46:767–770

    PubMed  CAS  Google Scholar 

  • Collén J, Herve C, Guisle-Marsollier I, Leger JJ, Boyen C (2006b) Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate. J Exp Bot 57:3869–3881

    PubMed  Google Scholar 

  • Collén J, Pedersen M (1994) A stress induced oxidative burst in Eucheuma platycladum (Rhodophyta). Physiol Plantarum 92:417–422

    Google Scholar 

  • Collén J, Roeder V, Rousvoal S, Collin O, Kloareg B, Boyen C (2006a) An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J Phycol 42:104–112

    Google Scholar 

  • Cronin G (2001) Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock JB, Baker B (eds) Marine Chemical Ecology. CRC Press, New York, pp 325–354

    Google Scholar 

  • Cronin G, Hay ME (1996a) Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 77:1531–1543

    Google Scholar 

  • Cronin G, Hay ME (1996b) Within plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth differentiation balance hypothesis. Oecologia 105:361–368

    Google Scholar 

  • Cvejic JH, Rohmer M (2000) CO2 as main carbon source for isoprenoid biosynthesis via the mevalonate-independent methylerythritol 4-phosphate route in the marine diatoms Phaeodactylum tricornutum and Nitzschia ovalis. Phytochemistry 53:21–28

    PubMed  CAS  Google Scholar 

  • de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad-spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271

    Google Scholar 

  • Dethier MN, Williams SL, Freeman A (2005) Seaweeds under stress: Manipulated stress and herbivory affect critical life-history functions. Ecol Monogr 75:403–418

    Google Scholar 

  • Diaz E, Guldenzoph C, Molis M, McQuaid C, Wahl M (2006) Variability in grazer-mediated defensive responses of green and red macroalgae on the south coast of South Africa. Mar Biol 149:1301–1311

    Google Scholar 

  • Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    PubMed  CAS  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins–occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17

    PubMed  CAS  Google Scholar 

  • Dixon RA (2005a) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    PubMed  CAS  Google Scholar 

  • Dixon RA (2005b) Plant biotechnology kicks off into the 21st century. Trends Plant Sci 10:560–561

    PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence – a genomics perspective. Mol Plant Pathol 3:371–390

    CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu XN, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    PubMed  CAS  Google Scholar 

  • Dring MJ (2006) Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv Bot Res 43:175–207

    CAS  Google Scholar 

  • Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372

    Google Scholar 

  • Dworjanyn SA, de Nys R, Steinberg PD (1999) Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar Biol 133:727–736

    CAS  Google Scholar 

  • Dworjanyn SA, de Nys R, Steinberg PD (2006a) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163

    CAS  Google Scholar 

  • Dworjanyn SA, Wright JT, Paul NA, de Nys R, Steinberg PD (2006b) Cost of chemical defence in the red alga Delisea pulchra. Oikos 113:13–22

    CAS  Google Scholar 

  • Edwards KF, Pfister CA, Van Alstyne KL (2006) Nitrogen content in the brown alga Fucus gardneri and its relation to light, herbivory and wave exposure. J Exp Mar Biol Ecol 336:99–109

    CAS  Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 28:680–686

    Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2006) Lack of defense or phlorotannin induction by UV radiation or mesograzers in Desmarestia anceps and D. menziesii (Phaeophyceae). J Phycol 42:1174–1183

    CAS  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    PubMed  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase-inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002

    PubMed  CAS  Google Scholar 

  • Fulcher RG, McCully ME (1971) Histological studies of the genus Fucus. V. An autoradiographic and electron microscopic study of the early stages of regeneration. Can J Bot 49:161–165

    Google Scholar 

  • Gavagnin M, Marin A, Castelluccio F, Villani G, Cimino G (1994) Defensive relationships between Caulerpa prolifera and its shelled sacoglossan predators. J Exp Mar Biol Ecol 175:197–210

    Google Scholar 

  • Gerwick WH (1999) Eicosanoids in nonmammals. In: Sankawa U, Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Elsevier, New York. pp 207–254

    Google Scholar 

  • Gerwick WH, Fenical W, Norris JN (1985) Chemical variation in the tropical seaweed Stypopodium zonale (Dictyotaceae). Phytochemistry 24:1279–1283

    CAS  Google Scholar 

  • Gerwick WH, Nagle DG, Proteau PJ (1993a) Oxylipins from marine invertebrates. Top Curr Chem 167:117–180

    CAS  Google Scholar 

  • Gerwick WH, Proteau PJ, Nagle DG, Wise ML, Jiang ZD, Bernart MW, Hamberg M (1993b) Biologically active oxylipins from seaweeds. Hydrobiologia 261:653–665

    Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hammerstrom K, Dethier MN, Duggins DO (1998) Rapid phlorotannin induction and relaxation in five Washington kelps. Mar Ecol Prog Ser 165:293–305

    CAS  Google Scholar 

  • Hay ME, Steinberg PD (1992) The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary metabolites. Evolutionary and ecological perspectives. Academic, San Diego, CA, pp 371–413

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Honkanen T, Jormalainen V (2005) Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia 144:196–205

    PubMed  Google Scholar 

  • Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffmann F, Pavia H, Potin P, Poulet SA, Toth G (2006) New trends in marine chemical ecology. Estuaries and Coasts 29:531–551

    CAS  Google Scholar 

  • Jormalainen V, Honkanen T (2004) Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J Evol Biol 17:807–820

    PubMed  CAS  Google Scholar 

  • Jormalainen V, Honkanen T, Koivikko R, Eranen J (2003) Induction of phlorotannin production in a brown alga: defense or resource dynamics? Oikos 103:640–650

    CAS  Google Scholar 

  • Jung V, Pohnert G (2001) Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57:7169–7172

    CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    PubMed  Google Scholar 

  • Kim D, Filtz MR, Proteau PJ (2004) The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. J Nat Prod 67:1067–1069

    PubMed  CAS  Google Scholar 

  • Küpper FC, Gaquerel E, Boneberg EM, Morath S, Salaun JP, Potin P (2006) Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J Exp Bot 57:1991–1999

    PubMed  Google Scholar 

  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291

    PubMed  Google Scholar 

  • Küpper FC, Muller DG, Peters AF, Kloareg B, Potin P (2002) Oligoalginate recognition and oxidative burst play a key role in natural and induced resistance of sporophytes of laminariales. J Chem Ecol 28:2057–2081

    PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Phys 48:251–275

    CAS  Google Scholar 

  • Leimu R, Koricheva J (2006) A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining the evidence from ecological and agricultural studies. Oikos 112:1–9

    Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Phys 50:47–65

    CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plantarum 101:643–652

    CAS  Google Scholar 

  • Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650

    PubMed  CAS  Google Scholar 

  • Lion U, Wiesemeier T, Weinberger F, Beltran J, Flores V, Faugeron S, Correa J, Pohnert G (2006) Phospholipases and galactolipases trigger oxylipin-mediated wound-activated defence in the red alga Gracilaria chilensis against epiphytes. ChemBioChem 7:457–462

    PubMed  CAS  Google Scholar 

  • Liu QY, van der Meer JP, Reith ME (1994) Isolation and characterization of phase-specific complementary DNAs from sporophytes and gametophytes of Porphrya purpurea (Rhodophyta) using subtracted complementary DNA libraries. J Phycol 30:513–520

    CAS  Google Scholar 

  • Loomis WE (1953) Growth and differentiation – an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, IA, pp 1–17

    Google Scholar 

  • Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory – the first microscopic study. Planta 218:928–937

    PubMed  Google Scholar 

  • Macaya EC, Rothausler E, Thiel M, Molis M, Wahl M (2005) Induction of defenses and within-alga variation of palatability in two brown algae from the northern-central coast of Chile: effects of mesograzers and UV radiation. J Exp Mar Biol Ecol 325:214–227

    Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plantarum 119:56–68

    CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T, et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    PubMed  CAS  Google Scholar 

  • Maximilien R, de Nys R, Holmstrom C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246

    Google Scholar 

  • Mayes SR, Chiesa MD, Zhang Z, Barber J (1993) The genes aroA and trnQ are located upstream of psbO in the chromosome of Synechocystis 6803. FEBS J 325:255–261

    CAS  Google Scholar 

  • McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC, New York, NY

    Google Scholar 

  • McConnell O, Fenical W (1977) Halogen chemistry of red alga Asparagopsis. Phytochemistry 16:367–374

    CAS  Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Google Scholar 

  • Molis M, Korner J, Ko YW, Kim JH, Wahl M (2006) Inducible responses in the brown seaweed Ecklonia cava: the role of grazer identity and season. J Ecol 94:243–249

    Google Scholar 

  • Moore BS (2006) Biosynthesis of marine natural products: macroorganisms (Part B). Nat Prod Rep 23:615–629

    PubMed  CAS  Google Scholar 

  • Nicholas GM, Phillips AJ (2006) Marine natural products: synthetic aspects. Nat Prod Rep 23:79–99

    PubMed  CAS  Google Scholar 

  • Obrien ET, White S, Jacobs RS, Boder GB, Wilson L (1984) Pharmacological properties of a marine natural product, stypoldione, obtained from the brown alga Stypopodium zonale. Hydrobiologia 116:141–145

    Google Scholar 

  • Ouborg NJ, Vriezen WH (2007) An ecologist’s guide to ecogenomics. J Ecol 95:8–16

    CAS  Google Scholar 

  • Paffenhofer GA, Ianora A, Miralto A, et al. (2005) Colloquium on diatom-copepod interactions. Mar Ecol Prog Ser 286:293–305

    Google Scholar 

  • Patron NJ, Rogers MB, Keeling PJ (2006) Comparative rates of evolution in endosymbiotic nuclear genomes. BMC Evol Biol 6:46

    PubMed  Google Scholar 

  • Paul NA, Cole L, de Nys R, Steinberg PD (2006a) Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). J Phycol 42:637–645

    Google Scholar 

  • Paul NA, de Nys R, Steinberg PD (2006b) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser 306:87–101

    CAS  Google Scholar 

  • Paul VJ, Van Alstyne KL (1992) Activation of chemical defenses in the tropical green algae Halimeda spp. J Exp Mar Biol Ecol 160:191–203

    CAS  Google Scholar 

  • Pavia H, Ã…berg P (1996) Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). Hydrobiologia 327:199–203

    Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Ã…berg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146

    CAS  Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Google Scholar 

  • Pearson G, Lago-Leston A, Valente M, Serrao E (2006) Simple and rapid RNA extraction from freeze-dried tissue of brown algae and seagrasses. Eur J Phycol 41:97–104

    CAS  Google Scholar 

  • Pearson G, Serrao EA, Cancela ML (2001) Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid algae. Eur J Phycol 36:359–366

    Google Scholar 

  • Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217

    CAS  Google Scholar 

  • Pennings SC, Zimmer M, Dias N, Sprung M, Dave N, Ho C-K, Kunza A, McFarlin C, Mews M, Pfauder A, Salgado CS (2007) Latitudinal variation in plant-herbivore interactions in European salt marshes. Oikos 116:543–549

    Google Scholar 

  • Pereira RC, Soares AR, Teixeira VL, Villaca R, da Gama BAP (2004) Variation in chemical defenses against herbivory in southwestern Atlantic Stypopodium zonale (Phaeophyta). Bot Mar 47:202–208

    Google Scholar 

  • Peters AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol 40:1079–1088

    Google Scholar 

  • Phillips N, Smith CM, Morden CW (2001) An effective DNA extraction protocol for brown algae. Phycol Res 49:97–102

    CAS  Google Scholar 

  • Pohnert G (2004) Chemical defense strategies of marine organisms. In: The chemistry of pheromones and other semiochemicals I. Topics in current chemistry, vol 239. Springer, Berlin. pp 179–219

    Google Scholar 

  • Pohnert G (2005) Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:946–959

    PubMed  CAS  Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    PubMed  CAS  Google Scholar 

  • Pohnert G, Jung V (2003) Intracellular compartmentation in the biosynthesis of caulerpenyne: study on intact macroalgae using stable-isotope-labeled precursors. Org Lett 5:5091–5093

    PubMed  CAS  Google Scholar 

  • Potin P, Bouarab K, Salaun JP, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5:308–317

    PubMed  CAS  Google Scholar 

  • Ragan MA (1976) Physodes and the phenolic compounds of brown algae. Composition and significance of physodes in vivo. Bot Mar 19:145–154

    CAS  Google Scholar 

  • Ragan MA, Glombitza K (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress, Bristol, England, pp 130–241

    Google Scholar 

  • Rein KS, Borrone J (1999) Polyketides from dinoflagellates: origins, pharmacology and biosynthesis. Comp Biochem Physiol B: Biochem Mol Biol 124:117–131

    CAS  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with plant secondary metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW (2006) Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell 5:1517–1531

    PubMed  CAS  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    PubMed  CAS  Google Scholar 

  • Rohde S, Molis M, Wahl M (2004) Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–1018

    Google Scholar 

  • Ross C, Küpper FC, Vreeland V, Waite JH, Jacobs RS (2005) Evidence of a latent oxidative burst in relation to wound repair in the giant unicellular chlorophyte Dasycladus vermicularis. J Phycol 41:531–541

    CAS  Google Scholar 

  • Ross C, Van Alstyne KL (2007) Intraspecific variation in stress-induced hydrogen peroxide scavenging by the ulvoid macroalga Ulva lactuca. J Phycol 43(3):466–474

    Google Scholar 

  • Salgado CS, Pennings SC (2005) Latitudinal variation in palatability of salt-marsh plants: are differences constitutive? Ecology 86:1571–1579

    Google Scholar 

  • Schoenwaelder MEA (2002) Physode distribution and the effect of ‘thallus sunburn’ in Hormosira banksii (Fucales, Phaeophyceae). Bot Mar 45:262–266

    CAS  Google Scholar 

  • Schoenwaelder MEA, Clayton MN (2000) Physode formation in embryos of Phyllospora comosa and Hormosira banksii (Phaeophyceae). Phycologia 39:1–9

    Article  Google Scholar 

  • Schwender J, Gemunden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    PubMed  CAS  Google Scholar 

  • Schwender J, Zeidler J, Groner R, Muller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    PubMed  CAS  Google Scholar 

  • Shibata T, Hama Y, Miyasaki T, Ito M, Nakamura T (2006) Extracellular secretion of phenolic substances from living brown algae. J Appl Phycol 18:787–794

    CAS  Google Scholar 

  • Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16:291–296

    CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    PubMed  CAS  Google Scholar 

  • Shick JM, Romaine-Lioud S, Ferrier-Pages C, Gattuso JP (1999) Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol Oceanogr 44:1667–1682

    CAS  Google Scholar 

  • Shimizu Y (2003) Microalgal metabolites. Curr Opin Microbiol 6:236–243

    PubMed  CAS  Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

    CAS  Google Scholar 

  • Snyder RV, Gibbs PDL, Palacios A, Abiy L, Dickey R, Lopez JV, Rein KS (2003) Polyketide synthase genes from marine dinoflagellates. Mar Biotechnol 5:1–12

    PubMed  CAS  Google Scholar 

  • Sotka EE (2003) Genetic control of feeding preference in the herbivorous amphipod Ampithoe longimana. Mar Ecol Prog Ser 256:305–310

    Google Scholar 

  • Sotka EE, Taylor RB, Hay ME (2002) Tissue-specific induction of resistance to herbivores in a brown seaweed: the importance of direct grazing versus waterborne signals from grazed neighbors. J Exp Mar Biol Ecol 277:1–12

    Google Scholar 

  • Stafford HA (2000) The evolution of phenolics in plants. In: Romeo JT (ed) Evolution of metabolic pathways. Elsevier, New York, pp 25–47

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    PubMed  Google Scholar 

  • Steinberg PD (1988) Effects of quantitative and qualitative variation in phenolic compounds on feeding in 3 species of marine invertebrate herbivores. J Exp Mar Biol Ecol 120:221–237

    Google Scholar 

  • Steinberg PD, de Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28:1935–1951

    PubMed  CAS  Google Scholar 

  • Steinberg PD, Van Altena I (1992) Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol Monogr 62:189–222

    Google Scholar 

  • Stern JL, Hagerman AE, Steinberg PD, Winter FC, Estes JA (1996) A new assay for quantifying brown algal phlorotannins and comparisons to previous methods. J Chem Ecol 22:1273–1293

    CAS  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Google Scholar 

  • Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253

    CAS  Google Scholar 

  • Targett NM, Coen LD, Boettcher AA, Tanner CE (1992) Biogeographic comparisons of marine algal polyphenolics – evidence against a latitudinal trend. Oecologia 89:464–470

    Google Scholar 

  • Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defenses of valuable seaweed tissues: consequences for herbivore fitness. Ecology 86:612–618

    Google Scholar 

  • Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc Natl Acad Sci USA 97:14418–14420

    PubMed  CAS  Google Scholar 

  • Toth GB, Pavia H (2002) Lack of phlorotannin induction in the kelp Laminaria hyperborea in response to grazing by two gastropod herbivores. Mar Biol 140:403–409

    Google Scholar 

  • Toth GB, Pavia H (2007) Induced herbivore resistance in seaweeds: a meta-analysis. J Ecol 95:425–434

    Google Scholar 

  • Tuomi J, Niemela P, Chapin FS, Bryant JP, Siren S (1988) Defensive responses of trees in relation to their carbon/nutrient balance. In: Mattson JB (ed) Mechanisms of woody plant defense against insects: search for patterns. Springer, New York, pp 57–72

    Google Scholar 

  • Van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–663

    Google Scholar 

  • Van Alstyne KL, Dethier MN, Duggins DO (2001a) Spatial patterns in macroalgal chemical defenses. In: McClintock JB, Baker B (eds) Marine chemical ecology. CRC, New York. pp 301–324

    Google Scholar 

  • Van Alstyne KL, Paul VJ (1990) The biogeography of polyphenolic compounds in marine macroalgae–temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84:158–163

    Google Scholar 

  • Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001b) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65

    CAS  Google Scholar 

  • Varela-Alvarez E, Andreakis N, Lago-Leston A, Pearson GA, Serrao EA (2006) Genomic DNA isolation from green and brown algae (Caulerpales and Fucales) for microsatellite library construction. J Phycol 42:741–745

    CAS  Google Scholar 

  • Waaland JR, Stiller JW, Cheney DP (2004) Macroalgal candidates for genomics. J Phycol 40:26–33

    Google Scholar 

  • Waller RF, Patron NJ, Keeling PJ (2006) Phylogenetic history of plastid-targeted proteins. in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Micr 56:1439–1447

    CAS  Google Scholar 

  • Wanke M, Skorupinska-Tudek K, Swiezewska E (2001) Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Act Biochim Pol 48:663–672

    CAS  Google Scholar 

  • Weidner K, Lages BG, da Gama BAP, Molis M, Wahl M, Pereira RC (2004) Effect of mesograzers and nutrient levels on induction of defenses in several Brazilian macroalgae. Mar Ecol Prog Ser 283:113–125

    Google Scholar 

  • Weinberger F, Friedlander M (2000) Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J Phycol 36:1079–1086

    CAS  Google Scholar 

  • White SJ, Jacobs RS (1983) Effect of stypoldione on cell-cycle progression, DNA and protein-synthesis, and cell-division in cultured sea urchin embryos. Mol Pharmacol 24:500–508

    PubMed  CAS  Google Scholar 

  • Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. In: Leigh RA, Sanders D, Callow JA (eds) The plant vacuole: advances in botanical research, vol 25. Academic, London, pp 141–169

    Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    PubMed  CAS  Google Scholar 

  • Wright JT, de Nys R, Poore AGB, Steinberg PD (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology 85:2946–2959

    Google Scholar 

  • Wright JT, de Nys R, Steinberg PD (2000) Geographic variation in halogenated furanones from the red alga Delisea pulchra and associated herbivores and epiphytes. Mar Ecol Prog Ser 207:227–241

    CAS  Google Scholar 

  • Xie DY, Dixon RA (2005) Proanthocyanidin biosynthesis – still more questions than answers? Phytochemistry 66:2127–2144

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelletreau, K.N., Targett, N.M. (2008). New Perspectives for Addressing Patterns of Secondary Metabolites in Marine Macroalgae. In: Amsler, C.D. (eds) Algal Chemical Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74181-7_6

Download citation

Publish with us

Policies and ethics