Skip to main content

Algal Sensory Chemical Ecology

  • Chapter
Algal Chemical Ecology

Sensory chemical ecology is the branch of chemical ecology that focuses on chemical communications between organisms and chemical sensing of the environment by organisms. Algae are well known to have numerous physiological responses to variations in their chemical environment, particularly with respect to nutrients (Lobban and Harrison 1994). However, with respect to environmental sensing it is typical for “chemical ecology” to be restricted to behavioral responses and I have followed that restricted definition here. Sensory chemical ecology occupies only a single, short chapter in this book on algal chemical ecology. This is an illustration of one of if not the major way in which the current field of algal chemical ecology differs from chemical ecological studies of other organisms. If a current, comprehensive book on terrestrial chemical ecology was available, it could easily be dominated by chapters on sensory chemical ecology (cf. more focused works by Roitberg and Isman 1992; Eisner and Meinwald 1995; Cardé and Millar 2004; Dicke and Takken 2006). Even in nonalgal marine chemical ecology, sensory ecology is relatively well studied, particularly with respect to prey detection via odor plumes and to chemical cues for larval settlement (e.g., reviews by Pawlik 1992; Atema 1995; Hadfield and Paul 2001; Trapido-Rosenthal 2001; Steinberg et al. 2002). The sensory chemical ecology of algae is best known with respect to chemical communication either in gamete attraction involving pheromones or in chemical induction of gametogenesis or gamete release. Most such reports have examined freshwater green algae and marine brown algae. More limited studies have involved chemoattractive behaviors of macroalgal spores or microalgal vegetative cells in a wider variety of taxa or involved chemical cues for green or brown macroalgal spore settlement. However, perhaps the most exciting areas of recent progress have been with respect to settlement cues in macroalgal spores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43: 1–91

    Article  CAS  Google Scholar 

  • Amsler CD, Iken KB (2001) Chemokinesis and chemotaxis in marine bacteria and algae. In: McClintock JB, Baker BJ (eds) Marine Chemical Ecology. CRC Press, Boca Raton, Florida, pp 413–430

    Google Scholar 

  • Amsler CD, Neushul M (1989) Chemotactic effects of nutrients on spores of the kelps Macrocystis pyrifera and Pterygophora californica. Mar Biol 102: 557–564

    Article  CAS  Google Scholar 

  • Amsler CD, Neushul M (1990) Nutrient stimulation of spore settlement in the kelps Pterygophora californica and Macrocystis pyrifera. Mar Biol 107: 297–304

    Article  CAS  Google Scholar 

  • Amsler CD, Reed DC, Neushul M (1992) The microclimate inhabited by macroalgal propagules. Br Phycol J 27: 253–270

    Article  Google Scholar 

  • Amsler CD, Shelton KL, Britton CJ, Spencer NY, Greer GP (1999) Nutrients do not influence swimming behavior or settlement rates of Ectocarpus siliculosus (Phaeophyceae) spores. J Phycol 35: 239–244

    Article  Google Scholar 

  • Atema J (1995) Chemical signals in the marine environment – Dispersal, detection, and temporal signal analysis. Proc Nat Acad Sci USA 92: 62–66

    Article  PubMed  CAS  Google Scholar 

  • Bagorda A, Mihaylov VA, Parent CA (2006) Chemotaxis: Moving forward and holding on to the past. Thromb Haemost 95: 12–21

    PubMed  CAS  Google Scholar 

  • Brandham PE (1967) Time-lapse studies of conjugation in Cosmarium botrytis II. Pseudoconjugation and an anisogamous mating behaviour involving chemotaxis. Can J Bot 45: 483–493

    Article  Google Scholar 

  • Callow JA, Callow ME (2006) Bioflims. In: Fusetani N, Clare A (eds) Antifouling Compounds. Springer-Verlag, Berlin, Heidleberg, pp 141–170

    Chapter  Google Scholar 

  • Callow ME, Callow JA (1998) Enhanced adhesion and chemoattraction of zoospores of the fouling alga Enteromorpha to some foul-release silicone elastomers. Biofouling 13: 157–172

    Article  CAS  Google Scholar 

  • Callow ME, Callow JA, Ista LK, Coleman SE, Nolasco AC, Lopez GP (2000) Use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion processes of green algal (Enteromorpha) zoospores. Appl Environ Microbiol 66: 3249–3254

    Article  PubMed  CAS  Google Scholar 

  • Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R (1997) Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: Quantitative settlement studies and video microscopy. J Phycol 33: 938–947

    Article  Google Scholar 

  • Callow ME, Jennings AR, Brennan AB, Seegert CE, Gibson A, Wilson L, Feinberg A, Baney R, Callow JA (2002) Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling 18: 237–245

    Article  Google Scholar 

  • Cancellieri PJ, Burkholder JM, Deamer-Melia NJ, Glasgow HB (2001) Chemosensory attraction of zoospores of the estuarine dinoflagellates, Pfiesteria piscicida and P. shumwayae, to finfish mucus and excreta. J Exp Mar Biol Ecol 264: 29–45

    Article  Google Scholar 

  • Cardé RT, Millar JG (2004) Advances in Insect Chemical Ecology. Cambridge University Press, New York

    Book  Google Scholar 

  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB (2006) Engineered antifouling microtopographies – correlating wettability with cell attachment. Biofouling 22: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Camara M (2005) Extracellular communication in bacteria. Top Curr Chem 240: 279–315

    CAS  Google Scholar 

  • Christie AO (1973) Spore settlement in relation to fouling by Enteromorpha. In: Acker RF, Brown BF, DePalma JR, Iverson WP (eds) Proceedings of the Third International Congress on Marine Corrosion and Fouling. Northwestern University Press, Evanston, pp 674–681

    Google Scholar 

  • Christie AO, Evans LV (1962) Periodicity in the liberation of gametes and zoospores of Enteromorpha intestinalis Link. Nature 193: 193–194

    Article  Google Scholar 

  • Coesel PFM, de Jong W (1986) Vigorous chemotactic attraction as a sexual response in Closterium ehrenbergii Meneghini (Desmidiaceae, Chlorophyta). Phycologia 25: 405–408

    Google Scholar 

  • Cooksey B, Cooksey KE (1988) Chemical signal-response in diatom of the genus Amphora. J Cell Sci 91: 523–529

    CAS  Google Scholar 

  • Dicke M, Takken W (2006) Chemical Ecology: From Gene to Ecosystem. Springer, New York

    Google Scholar 

  • Dusenbery DB (1992) Sensory Ecology. W.H. Freeman and Company, New York

    Google Scholar 

  • Eisner T, Meinwald J (1995) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington, DC

    Google Scholar 

  • Ermilova EV, Gromov BV (1988) Chemotaxis of zoospores of the green alga Chlorococcum minutum. Soviet Plant Physiol 35: 398–402

    Google Scholar 

  • Ermilova EV, Zalutskaya ZM, Gromov BV (1993) Chemotaxis towards sugars in Chlamydomonas reinhardtii. Curr Microbiol 27: 47–50

    Article  CAS  Google Scholar 

  • Ermilova EV, Zalutskaya ZM, Lapina TV, Nikitin MM (2003) Chemotactic behavior of Chlamydomonas reinhardtii is altered during gametogenesis. Curr Microbiol 46: 261–264

    Article  PubMed  CAS  Google Scholar 

  • Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA (2002) The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integr Comp Biol 42: 1116–1122

    Article  Google Scholar 

  • Fitt WK (1984) The role of chemosensory behavior of Symbiodinium microadriaticum, intermediate hosts, and host behavior in the infection of coelenterates and molluscs with zooxanthellae. Mar Biol 81: 9–17

    Article  Google Scholar 

  • Fraenkel GS, Gunn DL (1961) The Orientation of Animals, Kineses, Taxes and Compass Reactions. Dover Publications, New York

    Google Scholar 

  • Fries L (1975) Some observations on the morphology of Enteromorpha linza (L.) J. Ag. and Enteromorpha compressa (L.) Grev. in axenic culture. Bot Mar 18: 251–253

    Article  Google Scholar 

  • Fukuhara Y, Mizuta H, Yasui H (2002) Swimming activities of zoospores in Laminaria japonica (Phaeophyceae). Fish Sci 68: 1173–1181

    Article  CAS  Google Scholar 

  • Fukumoto R, Fujii T, Sekimoto H (1998) A newly identified chemotactic sexual pheromone from Closterium ehrenbergii. Sex Plant Reprod 11: 81–85

    Article  CAS  Google Scholar 

  • Govorunova EG, Sineshchekov OA (2003) Integration of photo- and chemosensory signaling pathways in Chlamydomonas. Planta 216: 535–540

    PubMed  CAS  Google Scholar 

  • Govorunova EG, Sineshchekov OA (2005) Chemotaxis in the green flagellate alga Chlamydomonas. Biochemistry-Moscow 70: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Greer SP, Amsler CD (2002) Light boundaries and the coupled effects of surface hydrophobicity and light on spore settlement in the brown alga Hincksia irregularis (Phaeophyceae). J Phycol 38: 116–124

    Article  Google Scholar 

  • Greer SP, Amsler CD (2004) Clonal variation in phototaxis and settlement behaviors of Hincksia irregularis (Phaeophyceae) spores. J Phycol 40: 44–53

    Google Scholar 

  • Greer SP, Iken K, McClintock JB, Amsler CD (2006) Bioassay-guided fractionation of antifouling compounds using computer-assisted motion analysis of brown algal spore swimming. Biofouling 22: 125–132

    Article  PubMed  CAS  Google Scholar 

  • Greer SP, Iken KB, McClintock JB, Amsler CD (2003) Individual and coupled effects of echinoderm extracts and surface hydrophobicity on spore settlement and germination in the brown alga Hincksia irregularis. Biofouling 19: 315–326

    Article  PubMed  Google Scholar 

  • Hadfield M, Paul VJ (2001) Natural chemical cues for settlement and metamorphosis in marine-invertebrate larvae. In: McClintock JB, Baker BJ (eds) Marine Chemical Ecology. CRC Press, Boca Raton, FL, pp 431–461

    Google Scholar 

  • Hagen-Seyfferth M (1959) Zur Kenntnis der Geisseln und der Chemotaxis von Chlamydomonas eugametos Moewus (Chl. moewusii Gerloff). Planta 53: 376–401

    Article  CAS  Google Scholar 

  • Hill GJC, Cunningham RR, Byrne MM, Ferry TP, Halvorson JS (1989) Chemical control of androspore morphogenesis in Oedogonium donnellii (Chlorophyta, Oedogoniales). J Phycol 25: 368–376

    Article  CAS  Google Scholar 

  • Hirschberg R, Rodgers S (1978) Chemoresponses of Chlamydomonas reinhardtii. J Bacteriol 134: 671–673

    PubMed  CAS  Google Scholar 

  • Hoffman LR (1960) Chemotaxis of Oedogonium sperms. Southwestern Nat 5: 111–116

    Article  Google Scholar 

  • Hölmstrom C, James S, Egan S, Kjelleberg S (1996) Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10: 251–259

    Article  Google Scholar 

  • Hoops HJ, Cocina AE, Binder DS, Widjaja A (2002) Acetate is a chemoattractant for the colonial green alga Astrephomene gubernaculifera (Chlorophyceae). J Phycol 38: 1099–1105

    Article  CAS  Google Scholar 

  • Iken K, Amsler CD, Greer SP, McClintock JB (2001) Qualitative and quantitative studies of the swimming behaviour of Hincksia irregularis (Phaeophyceae) spores: Ecological implications and parameters for quantitative swimming assays. Phycologia 40: 359–366

    Article  Google Scholar 

  • Iken K, Greer SP, Amsler CD, McClintock JB (2003) A new antifouling bioassay monitoring brown algal spore swimming behaviour in the presence of echinoderm extracts. Biofouling 19: 327–334

    Article  PubMed  Google Scholar 

  • Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP (2004) Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol 70: 4151–4157

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke L, Marner FJ (1995) Lurlene, the sexual pheromone of the green flagellate Chlamydomonas allensworthii. Liebigs Ann 1995: 1343–1345

    Article  Google Scholar 

  • Jaenicke L, Starr RC (1996) The lurlenes, a new class of plastoquinone-related mating pheromones from Chlamydomonas allensworthii (Chlorophyceae). Eur J Biochem 241: 581–585

    Article  PubMed  CAS  Google Scholar 

  • Janowitz GS, Kamykowski D (2006) Modeled Karenia brevis accumulation in the vicinity of a coastal nutrient front. Mar Ecol Prog Ser 314: 49–59

    Article  Google Scholar 

  • Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote–eukaryote boundary. Science 298: 1207

    Article  PubMed  Google Scholar 

  • Kinzie RA (1974) Experimental infection of aposymbiotic gorgonian polyps with zooxanthellae. J Exp Mar Biol Ecol 15: 335–342

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed Ecology and Physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Machlis L, Hill GGC, Steinback KE, Reed W (1974) Some characteristics of the sperm attractant from Oedogonium cardiacum. J Phycol 10: 199–204

    Google Scholar 

  • Maier I (1982) New aspects of pheromone-triggered spermatozoid release in Laminaria digitata (Phaeophyta). Protoplasma 113: 137–142

    Article  CAS  Google Scholar 

  • Maier I (1993) Gamete orientation and induction of gametogenesis by pheromones in algae and plants. Plant Cell Environ 16: 891–907

    Article  CAS  Google Scholar 

  • Maier I (1995) Brown algal pheromones. Prog Phycol Res 11: 51–102

    CAS  Google Scholar 

  • Maier I, Calenberg M (1994) Effect of extracellular Ca2+ and Ca2+ antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Bot Acta 107: 451–460

    CAS  Google Scholar 

  • Maier I, Müller DG (1990) Chemotaxis in Laminaria digitata (Phaeophyceae). I. Analysis of spermatozoid movement. J Exp Bot 41: 869–876

    Article  Google Scholar 

  • Manahan CL, Iglesias PA, Long Y, Devreotes PN (2004) Chemoattractant signaling in Dictyostelium discoideum. Ann Rev Cell Devel Biol 20: 223–253

    Article  CAS  Google Scholar 

  • Manes S, Gomez-Mouton C, Lacalle RA, Jimenez-Baranda S, Mira E, Martinez-AC (2005) Mastering time and space: Immune cell polarization and chemotaxis. Sem Immunol 17: 77–86

    Article  CAS  Google Scholar 

  • Marshall K, Joint I, Callow ME, Callow JA (2006) Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microb Ecol 52: 302–310

    Article  PubMed  Google Scholar 

  • Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307: 1598

    Article  PubMed  CAS  Google Scholar 

  • Müller DG (1978) Locomotive responses of male gametes to the species-specific sex attractant of Ectocarpus siliculosus (Phaeophyta). Arch Protistenkd 120: 371–377

    Google Scholar 

  • Nultsch W, Hader D-P (1979) Photomovement in motile microorgamisms. Photochem Photobiol 29: 423–437

    Article  CAS  Google Scholar 

  • Nultsch W, Hader D-P (1988) Photomovement in motile microorganisms – II. Photochem Photobiol 47: 837–869

    Article  PubMed  CAS  Google Scholar 

  • Pasternak Z, Bachar A, Abelson A, Achituv Y (2004) Initiation of symbiosis between the soft coral Heteroxenia fuscescens and its zooxanthellae. Mar Ecol Prog Ser 279: 113–116

    Article  Google Scholar 

  • Pasternak Z, Blasius B, Abelson A, Achituv Y (2006) Host-finding behaviour and navigation capabilities of symbiotic zooxanthellae. Coral Reefs 25: 201–207

    Article  Google Scholar 

  • Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in the settlement – modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 5: 338–349

    Article  PubMed  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Ann Rev 30: 273–335

    Google Scholar 

  • Pickett-Heaps JD, West JA, Wilson SM, McBride DL (2001) Time-lapse videomicroscopy of cell (spore) movement in red algae. Eur J Phycol 36: 9–22

    Article  Google Scholar 

  • Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19: 108–122

    Article  PubMed  CAS  Google Scholar 

  • Provasoli L, Pinter IJ (1980) Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca. J Phycol 16: 196–201

    Article  Google Scholar 

  • Rawitscher-Kunkel E, Machlis L (1962) The hormonal integration of sexual reproduction in Oedogonium. Am J Bot 49: 177–183

    Article  Google Scholar 

  • Roitberg BD, Isman MB (1992) Insect chemical ecology: An evolutionary approach. Chapman & Hall, New York

    Google Scholar 

  • Sekimoto H (2005) Plant sex pheromones. Vitamins Hormones 72: 457–478

    Article  PubMed  CAS  Google Scholar 

  • Sjoblad RD, Frederikse PH (1981) Chemotactic responses of Chlamydomonas reinhardtii. Mol Cell Biol 1: 1057–1060

    PubMed  CAS  Google Scholar 

  • Starr RC, Marner FJ, Jaenicke L (1995) Chemoattraction of male gametes by a pheromone produced by female gametes of Chlamydomonas. Proc Nat Acad Sci USA 92: 641–645

    Article  PubMed  CAS  Google Scholar 

  • Steinberg PD, de Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28: 1935–1951

    Article  PubMed  CAS  Google Scholar 

  • Tait K, Joint I, Daykin M, Milton DL, Williams P, Camara M (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Thomas RWSP, Allsopp D (1983) The effects of certain periphytic marine bacteria upon the settlement and growth of Enteromorpha, a fouling alga. In: Oxley TA, Barry S (eds) Biodeterioration 5. John Wiley Sons, Ltd., New York, pp 348–357

    Google Scholar 

  • Trapido-Rosenthal H (2001) Contributions of marine chemical ecology to chemosensory neurobiology. In: McClintock JB, Baker BJ (eds) Marine Chemical Ecology. CRC Press, Boca Raton, FL, pp 463–479

    Google Scholar 

  • Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I (2006) Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29: 608–618

    Article  PubMed  CAS  Google Scholar 

  • Woodhead P, Moss B (1975) The effects of light and temperature on settlement and germination of Enteromorpha. Br Phycol J 10: 269–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amsler, C.D. (2008). Algal Sensory Chemical Ecology. In: Amsler, C.D. (eds) Algal Chemical Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74181-7_14

Download citation

Publish with us

Policies and ethics