Skip to main content

Metamorphism of Ultramafic Rocks

  • Chapter
  • First Online:
Petrogenesis of Metamorphic Rocks
  • 4926 Accesses

Abstract

Ultramafic rocks are magnesium silicate rocks that normally contain no felsic minerals or very little (<10 vol%) normative feldspar. The Earth’s mantle consists predominantly of ultramafic rocks. The mantle is, with the exception of some small anomalous regions, in a solid state. The ultramafic rocks undergo continuous recrystallization due to large-scale convection in sub-lithosphere mantle and as a result of tectonic processes in the lithosphere. The bulk of the mantle rocks, therefore, meet the criteria of metamorphic rocks. Metamorphic ultramafic rocks represent the largest volume of rocks of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Cited References

  • Bucher K, de Capitani Ch, Grapes R (2005) The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Lake Kvesjöen, Norwegian Caledonides. Can Mineralog 43:129–156

    Article  Google Scholar 

  • Evans BW (1977) Metamorphism of alpine peridotite and serpentine. Ann Rev Earth Planet Sci 5:397–447

    Article  Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in the Earth’s upper mantle: an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652

    Article  Google Scholar 

  • Li X-P, Rahn M, Bucher K (2004) Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. J Metamorph Geol 22:159–177

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). Am J Sci 272:487–509

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1977) Antigorite–ophicarbonates: contact metamorphism in Valmalenco, Italy. Contrib Miner Petrol 62:301–312

    Article  Google Scholar 

  • Warner M, McGeary S (1987) Seismic reflection coefficients from mantle fault zones. Geophys J R Astron Soc 89:223–230

    Google Scholar 

Further Reading and Recommended Literature

  • Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the Earth’s upper mantle. Nature 348:437–440

    Article  Google Scholar 

  • Barnes I, O’Neil JR (1969) The Relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geol Soc Am Bull 80:1947–1960

    Article  Google Scholar 

  • Bodinier J-L, Godard M (2004) Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW, Holland HD, Turekian KK (eds) The mantle and core. Treatise on geochemistry, vol 2. Elsevier-Pergamon, Oxford, pp 103–170

    Google Scholar 

  • Brey G, Brice WR, Ellis DJ, Green DH, Harris KL, Ryabchikov ID (1983) Pyroxene-carbonate reactions in the upper mantle. Earth Planet Sci Lett 62:63–74

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Brey GP, Köhler T, Nickel KG (1990) Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kb. J Petrol 31:1313–1352

    Google Scholar 

  • Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): the effects of Al3+ substitution on high pressure stability. Am Mineralog 88:99–108

    Google Scholar 

  • Brueckner HK, Carswell DA, Griffin WL (2002) Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses od the Norwegian Caledonides. Earth Planet Sci Lett 203:805–816

    Article  Google Scholar 

  • Bucher-Nurminen K (1990) Transfer of mantle fluids to the lower continental crust; constraints from mantle mineralogy and MOHO temperature. In: Nelson BK, Vidal P (eds) Development of continental crust through geological time. Chem Geol 83:249–261

    Google Scholar 

  • Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190:173–192

    Article  Google Scholar 

  • Carswell DA, Curtis CD, Kanaris-Sotiriou R (1974) Vein metasomatism in peridotite at Kalskaret near Tafjord, South Norway. J Petrol 15:383–402

    Google Scholar 

  • Carswell DA, Cuthbert SJ (2003) Ultrahigh pressure metamorphism in the Western Gneiss Region of Norway. In: Carswell DA, Compagnoni R (eds) Ultrahigh pressure metamorphism, vol 5, European Mineralogical Union Notes in Mineralogy. Eötvos University Press, Budapest, pp 51–73

    Google Scholar 

  • Chidester AH, Cady WM (1972) Origin and emplacement of alpine-type ultramafic rocks. Nature 240:27–31

    Google Scholar 

  • Coleman RG (1971) Plate tectonic emplacement of upper mantle peridotites along continental edges. J Geophys Res 76:1212–1222

    Article  Google Scholar 

  • Coleman RG, Keith TE (1971) A chemical study of serpentinization – Burro Mountain, California. J Petrol 12:311–328

    Google Scholar 

  • DĂ³dony I, PĂ³sfai M, Buseck PR (2002) Revised structure models for antigorite: an HRTEM study. Am Mineralog 87:1443–1457

    Google Scholar 

  • Dymek RF, Boak JL, Brothers SC (1988) Titanic chondrodite- and titanian clinohumite-bearing metadunite from the 3800 Ma Isua supracrustal belt, West Greenland: chemistry, petrology, and origin. Am Mineralog 73:547–558

    Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Evans BW (2008) Control of the products of serpentinization by the Fe2+Mg-1 exchange potential of olivine and orthopyroxene. J Petrol 49:1873–1887

    Article  Google Scholar 

  • Evans BW, Trommsdorff V (1974) Stability of enstatite + talc, and CO2-metasomatism of metaperidotite, Val d’Efra, Lepontine Alps. Am J Sci 274:274–296

    Article  Google Scholar 

  • Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40:333–348

    Article  Google Scholar 

  • Ferry JM (1995) Fluid flow during contact metamorphism of ophicarbonate rocks in the Bergell aureole, Val Malenco, Italian Alps. J Petrol 36:1039–1053

    Google Scholar 

  • Friend CRL, Bennett VC, Nutman AP (2002) Abyssal peridotites > 3, 800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contrib Mineralog Petrol 143:71–92

    Article  Google Scholar 

  • Frost BR (1985) On the stability of sulfides, oxides and native metals in serpentinite. J Petrol 26:31–63

    Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their Consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Article  Google Scholar 

  • Grobety B (2003) Polytypes and higher-order structures of antigorite: a TEM study. Am Mineralog 88:27–36

    Google Scholar 

  • Katzir Y, Avigad D, Matthews A, Garfunkel Z, Evans BW (1999) Origin and metamorphism of ultrabasic rocks associated with a subducted continental margin, Naxos (Cyclades, Greece). J Metamorph Geol 17:301–318

    Article  Google Scholar 

  • Kostenko O, Jamtveit B, Austrheim H, Pollok K, Putnis C (2002) The mechanism of fluid infiltration in peridotites at Almklovdalen, western Norway. Geofluids 2:203–215

    Article  Google Scholar 

  • Liou JG, Zhang RY, Ernst WG (2007) Very high-pressure orogenic garnet peridotites. PNAS (Natl Acad Sci USA) 104:9116–9121

    Article  Google Scholar 

  • Medaris LG (1984) A geothermobarometric investigation of garnet peridotites in the Western Gneiss Region of Norway. Contrib Miner Petrol 87:72–86

    Article  Google Scholar 

  • Mellini M, Trommsdorff V, Compagnoni R (1987) Antigorite polysomatism: behaviour during progressive metamorphism. Contrib Miner Petrol 97:147–155

    Article  Google Scholar 

  • O’Hanley DS, Dyar MD (1993) The composition of lizardite 1T and the formation of magnetite in serpentinites. Am Mineralog 78:391–404

    Google Scholar 

  • O’Hara MJ, Mercy ELP (1963) Petrology and petrogenesis of some garnetiferous peridotites. Trans R Soc (Edinb) 65:251–314

    Google Scholar 

  • Pawley A (2003) Chlorite stability in mantle peridotite: the reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib Mineralog Petrol 144:449–456

    Article  Google Scholar 

  • Peacock SM (1987) Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib Mineralog Petrol 95:55–70

    Article  Google Scholar 

  • Peretti A, Dubessy J, Mullis J, Frost BR, Trommsdorff V (1992) Highly reducing conditions during Alpine metamorphism of the Malenco peridotite (Sondrio, northern Italy) indicated by mineral paragenesis and H2 in fluid inclusions. Contrib Mineralog Petrol 112:329–340

    Article  Google Scholar 

  • Rahn MK, Bucher K (1998) Titanian clinohumite formation in the Zermatt-Saas ophiolites, Central Alps. Mineral Petrol 64:1–13

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York, 532 pp

    Google Scholar 

  • Scambelluri M, Hoogerduijn Strating EH, Piccardo GB, Vissers RLM, Rampone E (1991) Alpine olivine- and titanian clinohumite-bearing assemblages in the Erro-Tobbio peridotite (Voltri Massif, NW Italy). J Metamorph Geol 9:79–91

    Article  Google Scholar 

  • Schmädicke E (2000) Phase relations in peridotitic and pyroxenitic rocks in the model system CMASH and NCMASH. J Petrol 41:69–86

    Article  Google Scholar 

  • Schreyer W, Ohnmacht W, Mannchen J (1972) Carbonate-orthopyroxenites (sagvandites) from Troms, northern Norway. Lithos 5:345–363

    Article  Google Scholar 

  • Snoke AW, Lewis CC (1978) Jackstraw-textured talc-olivine rocks, Preston Peak area, Klamath Mountains, California. Geol Soc Am Bull 89:223–230

    Article  Google Scholar 

  • Song SG, Su L, Niu Y, Zhang LF (2007) Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, Northwestern China. Lithos 96:243–265

    Article  Google Scholar 

  • Song SG, Zhang LF, Niu Y (2004) Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Mineralog 89:1330–1336

    Google Scholar 

  • Soto JI (1993) PTMAFIC: software for thermobarometry and activity calculations with mafic and ultramafic assemblages. Am Mineralog 78:840–844

    Google Scholar 

  • Trommsdorff V, Evans BW (1980) Titanian hydroxyl – clinohumite: formation and breakdown in antigorite rocks (Malenco, Italy). Contrib Miner Petrol 72:229–242

    Article  Google Scholar 

  • Trommsdorff V, LĂ³pez SĂ¡nchez-VizcaĂ­no V, GĂ³mez-Pugnaire MT, MĂ¼ntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineralog Petrol 132:139–148

    Article  Google Scholar 

  • Trommsdorff V, Nimis PN (2001) Revised thermobarometry of Alpe Arami and other garnet peridotites from the Central Alps. J Petrol 42:103–115

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction related magmatism. Boch Geol Geotech Arb 44:248–249

    Google Scholar 

  • Ulmer PTV (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • van Roermund HLM, Drury MR (1998) Ultra-high pressure (P > 6 GPa) garnet peridotites in western Norway: exhumation of mantle rocks from > 185 km depth. Terra Nova 10:295–301

    Article  Google Scholar 

  • Viti C, Mellini M (1998) Mesh textures and bastites in the Elba retrograde serpentinites. Eur J Miner 10:1341–1359

    Google Scholar 

  • Wunder B, Schreyer W (1997) Antigorite: high pressure stability in the system MgO-SiO2-H2O (MSH). Lithos 41:213–227

    Article  Google Scholar 

  • Yang TN, Jahn BM (2000) Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. J Metamorph Geol 18:167–180

    Article  Google Scholar 

  • Zhang RY, Liou JG, Cong BL (1995) Talc-, magnestite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex rocks in the Dabie Mountains, China. J Petrol 36:1011–1037

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Bucher .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bucher, K., Grapes, R. (2011). Metamorphism of Ultramafic Rocks. In: Petrogenesis of Metamorphic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74169-5_5

Download citation

Publish with us

Policies and ethics