Skip to main content

A Subliminal-Free Variant of ECDSA

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4437)

Abstract

A mode of operation of the Elliptic Curve Digital Signature Algorithm (ECDSA) is presented which provably excludes subliminal communication through ECDSA signatures. For this, the notion of a signature scheme that is subliminal-free with proof is introduced which can be seen as generalizing subliminal-free signatures and being intermediate to the established concepts of invariant and unique signatures.

Motivated by the proposed use of ECDSA for signing passports, our focus is not on proving the mere existence of a subliminal-free ECDSA mode of operation, but on demonstrating its practical potential. The proposed construction relies on the availability of a party acting as warden and on a reasonably-sized non-interactive proof of subliminal-freeness. For instance, in the passport scenario, the passport holder plays the role of the warden, and we show that a suitable combination of the pseudo random function of Naor and Reingold with bit commitments and non-interactive zero-knowledge proofs can be used for accomplishing the required proof of subliminal-freeness with acceptable efficiency.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brickell, E.F., Chaum, D., Damgård, I.B., van de Graaf, J.: Gradual and verifiable release of a secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988)

    Google Scholar 

  • Burmester, M., Desmedt, Y., Itoh, T., Sakurai, K., Shizuya, H.: Divertible and Subliminal-Free Zero-Knowledge Proofs for Languages. Journal of Cryptology 12(3), 197–223 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  • Jens-Matthias, B., Steinwandt, R.: On Subliminal Channels in Deterministic Signature Schemes. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 182–194. Springer, Heidelberg (2005)

    Google Scholar 

  • Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive Zero-Knowledge. SIAM Journal on Computing 20, 1084–1118 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Bundesamt für Sicherheit in der Informationstechnik. Digitale Sicherheitsmerkmale im elektronischen Reisepass (2005), At the time of writing available at http://www.bsi.de/fachthem/epass/Sicherheitsmerkmale.pdf

  • Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)

    Google Scholar 

  • Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Computer and System Sciences 18(2), 143–154 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Desmedt, Y.: Abuses in Cryptography and How to Fight Them. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, Heidelberg (1990)

    Google Scholar 

  • Desmedt, Y.: Subliminal-Free Authentication and Signature (Extended Abstract). In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 23–33. Springer, Heidelberg (1988)

    Google Scholar 

  • Desmedt, Y.: Simmons’ Protocol is Not Free of Subliminal Channels. In: Proceedings 9th IEEE Computer Security Foundations Workshop, pp. 170–175. IEEE Computer Society Press, Los Alamitos, CA, USA (1996)

    CrossRef  Google Scholar 

  • Desmedt, Y., Goutier, C., Bengio, S.: Special Uses and Abuses of the Fiat-Shamir Passport Protocol. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 21–39. Springer, Heidelberg (1988)

    Google Scholar 

  • Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Google Scholar 

  • Goldwasser, S., Ostrovsky, R.: Invariant Signatures and Non-interactive Zero-Knowledge Proofs Are Equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, Springer, Heidelberg (1993)

    Google Scholar 

  • Goldreich, O.: Foundations of Cryptography, Volume II. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 12–24. ACM Press, New York, NY, USA (1989)

    CrossRef  Google Scholar 

  • ISO/IEC 15946-2: Information technology – Security techniques – Cryptographic techniques based on elliptic curves – Part 1: Digital Signatures (2002)

    Google Scholar 

  • Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th Annual Symposium on Foundations of Computer Science, pp. 248–253. IEEE, New York (1989)

    CrossRef  Google Scholar 

  • Lysyanskaya, A.: Unique Signatures and Verifiable Random Functions from the DH-DDH Separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  • Micali, S., Rabin, M., Vadhan, S.: Verifiable Random Functions. In: Proceedings of the 40th Annual Symposium on the Foundations of Computer Science, pp. 120–130. IEEE, New York (1999)

    Google Scholar 

  • Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-Random Functions. Journal of the ACM 51(2), 231–262 (2004)

    CrossRef  MathSciNet  Google Scholar 

  • Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  • Simmons, G.J.: The Prisoners’ Problem and the Subliminal Channel. In: Advances in Cryptology – CRYPTO 1983, pp. 51–67. Plenum Press, New York and London (1984)

    Google Scholar 

  • Simmons, G.J.: An Introduction to the Mathematics of Trust in Security Protocols. In: Proceedings of the Computer Security Foundations Workshop VI, pp. 121–127. IEEE Computer Society Press, Los Alamitos, CA, USA (1993)

    CrossRef  Google Scholar 

  • Gustavus, J.: Subliminal Communication Is Easy Using the DSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 218–232. Springer, Heidelberg (1994)

    Google Scholar 

  • Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to cryptography and computing. Journal of Combinatorial Mathematics and Combinatorial Computing 42, 3–31 (2002)

    MATH  MathSciNet  Google Scholar 

  • Vaudenay, S.: The Security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  • Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley Publishing, Chichester (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan L. Camenisch Christian S. Collberg Neil F. Johnson Phil Sallee

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohli, JM., González Vasco, M.I., Steinwandt, R. (2007). A Subliminal-Free Variant of ECDSA. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds) Information Hiding. IH 2006. Lecture Notes in Computer Science, vol 4437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74124-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74124-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74123-7

  • Online ISBN: 978-3-540-74124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics