Advertisement

Inference of Genetic Networks Using an Evolutionary Algorithm

  • Shuhei Kimura
Part of the Natural Computing Series book series (NCS)

Abstract

Genes control cellular behavior. Most genes play biological roles when they are translated into proteins via mRNA transcription. The process by which genes are converted into proteins is called gene expression, and the analysis of gene expression is one means by which to understand biological systems.

Keywords

Inference Method Genetic Network Cooperative Coevolution Golden Section Search Function Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic networks and metabolic pathways Bioinformatics 16, 727–734 (2000)CrossRefGoogle Scholar
  2. 2.
    Bourque, G., Sankoff, D.: Improving gene network inference by comparing expression time-series across species, developmental stages or tissues. Journal of Bioinformatics and Computational Biology 2, 765–783 (2004)CrossRefGoogle Scholar
  3. 3.
    Chen, T., He, H., Church, G.: Modeling gene expression with differential equations. In: Proceedings of the Pacific Symposium on Biocomputing 4, pp. 29–40 (1999)Google Scholar
  4. 4.
    Cho, D., Cho, K., Zhang, B.: Identification of biochemical networks by S-tree based genetic programming. Bioinformatics 22, 1631–1640 (2006)CrossRefGoogle Scholar
  5. 5.
    Cleveland, W.: Robust locally weight regression and smoothing scatterplots. Journal of American Statistical Association 79, 8290836 (1979)Google Scholar
  6. 6.
    D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from coexpression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)CrossRefGoogle Scholar
  7. 7.
    D’haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mRNA expression levels during CNS development and injury. In: Proceedings of the Pacific Symposium on Biocomputing 4, pp. 42–52 (1999)Google Scholar
  8. 8.
    Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14,863–14,868 (1998)CrossRefGoogle Scholar
  9. 9.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)CrossRefGoogle Scholar
  10. 10.
    Ideker, T., Thorsson, V., Karp, R.: Discovery of regulatory interactions through perturbation: inference and experimental design. In: Proceedings of the Pacific Symposium on Biocomputing 5, pp. 302–313 (2000)Google Scholar
  11. 11.
    Imade, H., Mizuguchi, N. Ono, I., Ono, N., Okamoto, M.: Gridifying: An evolutionary algorithm for inference of genetic networks using the improved GOGA framework and its performance evaluation on OBI grid. Lecture Notes in Bioinformatics 3370, 171–186 (2005)Google Scholar
  12. 12.
    Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. In: Proceedings of the Pacific Symposium on Biocomputing 7, pp. 175–186 (2002)Google Scholar
  13. 13.
    Kano, M., Nishimura, K., Tsutsumi, S., Aburatani, H., Hirota, K., Hirose, M.: Cluster overlap distribution map: visualization for gene expression analysis using immersive projection technology. Presence: Teleoperators and Virtual Environments 12, 96–109 (2003)CrossRefGoogle Scholar
  14. 14.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19, 643–650 (2003)CrossRefGoogle Scholar
  16. 16.
    Kimura, S., Hatakeyama, M., Konagaya, A.: Inference of S-system models of genetic networks using a genetic local search. In: Proceedings of the 2003 Congress on Evolutionary Computation, pp. 631–638 (2003)Google Scholar
  17. 17.
    Kimura, S., Hatakeyama, M., Konagaya, A.: Inference of S-system models of genetic networks from noisy time-series data. Chem-Bio Informatics Journal 4, 1–14 (2004)CrossRefGoogle Scholar
  18. 18.
    Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa, N., Yokoyama, S., Kuramitsu, S., Konagaya, A.: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm Bioinformatics 21, 1154–1163 (2005)CrossRefGoogle Scholar
  19. 19.
    Kimura, S., Konagaya, A.: High dimensional function optimization using a new genetic local search suitable for parallel computers. In: Proceedings of the 2003 Conference on Systems, Man & Cybernetics, pp. 335–342 (2003)Google Scholar
  20. 20.
    Kimura, S., Sonoda, K., Yamane, S., Matsumura, K., Hatakeyama, M.: Inference of genetic networks using neural network models. In: Proceedings of the 2005 Congress on Evolutionary Computation, pp. 1738–1745 (2005)Google Scholar
  21. 21.
    Kimura, S., Sonoda, K., Yamane, S., Matsumura, K., Hatakeyama, M.: Function approximation approach to the inference of normalized Gaussian network models of genetic networks. In: Proceedings of the 2006 International Joint Conference on Neural Networks, pp. 4525–4532 (2006)Google Scholar
  22. 22.
    Liang, R., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Proceedings of the Pacific Symposium on Biocomputing 3, pp. 18–29 (1998)Google Scholar
  23. 23.
    Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 1101–1108 (2001)Google Scholar
  24. 24.
    Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., Eguchi, Y.: Development of a system for the inference of large scale genetic networks. In: Proceedings of the Pacific Symposium on Biocomputing 6, pp. 446–458 (2001)Google Scholar
  25. 25.
    Maki, Y., Ueda, T., Okamoto, M., Uematsu, N., Inamura, Y., Eguchi, Y.: Inference of genetic network using the expression profile time course data of mouse P19 cells. Genome Informatics 13, 382–383 (2002)Google Scholar
  26. 26.
    Ong, I., Glasner, J., Page, D.: Modelling regulatory pathways in Escherichia coli from time series expression profiles. Bioinformatics 18, S241–S248 (2002)Google Scholar
  27. 27.
    Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks form perturbed expression profiles. Bioinformatics 17 (S215–S224) (2001)Google Scholar
  28. 28.
    Potter, M., De Jong, K.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8, 1–29 (2000)CrossRefGoogle Scholar
  29. 29.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1995)Google Scholar
  30. 30.
    Sakamoto, E., Iba, H.: Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 720–726 (2001)Google Scholar
  31. 31.
    Shiraishi, F., Savageau, M.: The tricarboxylic acid cycle in Dictyostelium discoideum. Journal of Biological Chemistry 267 22,912–22,918 (1992)Google Scholar
  32. 32.
    Thieffry, D., Huerta, A., Pérez-Rueda, E., Collado-Vides, J.: From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20, 433–440 (1998)CrossRefGoogle Scholar
  33. 33.
    Tominaga, D., Horton, P.: Inference of scale-free networks from gene expression time series. Journal of Bioinformatics and Computational Biology 4, 503–514 (2006)CrossRefGoogle Scholar
  34. 34.
    Tominaga, D., Koga, N., Okamoto, M.: Efficient numerical optimization algorithm based on genetic algorithm for inverse problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 251–258 (2000)Google Scholar
  35. 35.
    Tsai, K., Wang, F.: Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21, 1180–1188 (2005)CrossRefGoogle Scholar
  36. 36.
    Voit, E.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000)Google Scholar
  37. 37.
    Voit, E., Almeida, J.: Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 20, 1670–1681 (2004)CrossRefGoogle Scholar
  38. 38.
    Voit, E., Radivoyevitch, T.: Biochemical systems analysis of genome-wide expression data. Bioinformatics 16, 1023–1037 (2000)CrossRefGoogle Scholar
  39. 39.
    Yeung, M., Tegnér, J., Collins, J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America 99, 6163–6168 (2002)CrossRefGoogle Scholar
  40. 40.
    Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shuhei Kimura
    • 1
  1. 1.Tottori UniversityTottoriJapan

Personalised recommendations