Skip to main content

Embryogenesis of Artificial Landscapes

  • Chapter

Part of the Natural Computing Series book series (NCS)

Abstract

This chapter examines the artificial embryogeny of landscapes intended for use with virtual reality which consist of collections of polygons encoded using L-systems. Artificial Embryogeny is the study of indirect representations. A recent survey that attempts to classify different types of artificial embryogeny appears in [18]. A representation is a way of encoding a model or a solution to a problem for use in computation. For example, an array of n real numbers is a representation of the value of a function in n variables. A representation is indirect if it gives a set of directions for constructing the thing it specifies rather than encoding the object directly. The process of following the directions given in the indirect representation to obtain the final object is called expression. Indirect representations require an interpreter to express them and, because of this, are more difficult to understand at the specification or genetic level. There are number of advantages to indirect representations that more than balance this genetic obscurity in many situations. The most general of these advantages is that the transformation from the indirect specification to the final model or solution can incorporate heuristics and domain knowledge. This permits a search of a genetic space that is far smaller than the space in which the expressed objects reside and has a much higher average quality. Another advantage, showcased in this chapter, is compactness of representation. The indirect representations we evolve in this chapter use a few hundred bytes to specify megabyte-sized collections of polygons.

Keywords

  • Evolutionary Algorithm
  • Virtual Reality
  • Decay Parameter
  • Replacement Rule
  • Virtual Reality Application

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-74111-4_12
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-74111-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashlock, D., Bryden, K.: Evolutionary control of L-system interpretation. In: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 2, pp. 2273–2279. IEEE Press, Piscataway, NJ (2004)

    CrossRef  Google Scholar 

  2. Ashlock, D., Bryden, K., Gent, S.: Evolutionary control of bracketed L-system interpretation. In: Intelligent Engineering Systems Through Artificial Neural Networks, vol. 14, pp. 271–276 (2004)

    Google Scholar 

  3. Ashlock, D., Bryden, K., Gent, S.: Evolving L-systems to locate edit metric codes. In: C. Dagli et al. (ed.) Smart Engineering System Design: Neural Networks, Fuzzy, Evolutionary Programming, and Artificial Life, vol. 15, pp. 201–209. ASME Press (2005)

    Google Scholar 

  4. Ashlock, D., Bryden, K., Meinert, K., Bryden, K.: Transforming data into music using fractal algorithms. In: Intelligent Engineering Systems Through Artificial Neural Networks, vol. 13, pp. 665–670 (2003)

    Google Scholar 

  5. Ashlock, D., Gent, S., Bryden, K.: Evolution of L-system for compact virtual landscape generation. In: Proceedings of the 2005 Congress on Evolutionary Computation, vol. 3, pp. 2760–2767. IEEE Press (2005)

    CrossRef  Google Scholar 

  6. Ashlock, D., Kim, E.: The impact of cellular representation on finite state agents for Prisoner’s Dilemma. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, pp. 59–66. ACM Press, New York (2005)

    CrossRef  Google Scholar 

  7. Ball, P.: The Self-made Tapestry, Pattern Formation in Nature. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  8. Gruau, F.: Genetic synthesis of modular neural networks. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 318–325. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  9. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between between cellular encodings and direct codings for genetic neural networks. In: Genetic Programming 1996, pp. 81–89. MIT Press, Cambridge MA (1996)

    Google Scholar 

  10. Hornby, G, Pollack, J.: Body-brain co-evolution using L-systems as a generative encoding. In: L. Spector et al. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 868–875, Morgan Kaufmann, San Francisco, California, USA (2001)

    Google Scholar 

  11. Hornby, G., Pollack, J.: Evolving L-systems to generate virtual creatures. Computers and Graphics 25 (6), 1041–1048 (2001)

    CrossRef  Google Scholar 

  12. Kitano, H.: Designing neural networks using genetic algorithms with graph genetation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  13. Lindenmayer, A.: Mathematical models for cellular interaction in development. parts I and II. Journal of Theoretical Biology 16, 280–315 (1968)

    CrossRef  Google Scholar 

  14. Mandelbrot, B.: The fractal geometry of nature. W. H. Freeman and Company, New York (1983)

    Google Scholar 

  15. Miller, G., Todd, P., Hegde, S.: Designing neural networks using genetic algorithms. In: Proceedings of the 3rd International conference on Genetic Algorithms, pp. 379–384. Morgan Kaufmann, San Mateo, CA (1989)

    Google Scholar 

  16. Murray, J.: Mathematical Biology II, Springer-Verlag, New York (2003)

    Google Scholar 

  17. Prusinkiewicz, P., Lindenmayer, A., Hanan, J.: The algorithmic beauty of plants. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  18. Stanley, K., Miikkulainen, R.: A taxonomy for artificial embryology. Artificial Life 9, 93–130 (2003)

    CrossRef  Google Scholar 

  19. Syswerda, G.: A study of reproduction in generational and steady state Genetic Algorithms. In: Foundations of Genetic Algorithms, pp. 94–101. Morgan Kaufmann (1991)

    Google Scholar 

  20. Turing, A.: The chenical basis of morphogenesis. Philosophical Transactions of the Royal Society (B) 237, 37–72 (1952)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashlock, D., Gent, S., Bryden, K. (2008). Embryogenesis of Artificial Landscapes. In: Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds) Design by Evolution. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74111-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74111-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74109-1

  • Online ISBN: 978-3-540-74111-4

  • eBook Packages: Computer ScienceComputer Science (R0)