Skip to main content

Application of Atomic Force Microscopy to the Study of Expressed Molecules in or on a Single Living Cell

  • Chapter
Applied Scanning Probe Methods IX

Abstract

One of the most useful ways to study the physical and biochemical properties of expressed molecules in or on living cells is to directly manipulate the molecules in question. In this chapter, we describe howthe atomic forcemicroscope (AFM)was used as a nanomanipulator, and membrane receptors or expressed messenger RNA (mRNAs) were touched, pulled and picked up to study the expressed information and biophysical properties of these molecules. First, the chemical and physical modifications of the AFM tip are introduced. For the study of membrane receptors over a large area of cell surface using an AFM, the colloidal probe method is useful. Details of probe preparation, chemical modification of colloids and data analysis are introduced. Furthermore, a useful method to measure the interaction force between a single molecular pair on a soft material is also introduced. Second, some examples of expressed receptor mapping are given. Ligand molecules were immobilized on a microbead attached to the AFM tip and force measurements were performed one by one over a large area of living cell surface. Distributions and amounts of expressed receptors on the cell surface were studied by measuring ligand–receptor interactions. Third, extractions of both membrane receptors and mRNAs are introduced. For the extraction of membrane receptors, the AFM tip was treated with cross-linkers. The tip was moved close to the cell surface and covalent bonds were formed between the tip and the receptors through the cross-linkers. Extraction of membrane proteins was confirmed by monitoring the force in each assay. For the extraction of mRNAs, the AFM tip was inserted into the cell body, and incubated for a few minutes. After incubation, the tip was withdrawn and inserted into a PCR tube. Collection of mRNAs was then confirmed with PCR analysis. By application of this method, the time course expression of specific mRNAs was successfully measured. The methods introduced in this chapter represent new and useful applications of the AFM to the study of the properties of single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Nature 414:105

    Article  CAS  Google Scholar 

  2. Pardal R, Clarke MF, Morrison SJ (2003) Nat Rev Cancer 3:895

    Article  CAS  Google Scholar 

  3. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Nature 442:818

    Article  CAS  Google Scholar 

  4. Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467

    Article  CAS  Google Scholar 

  5. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Nat Biotechnol 14:1675

    Article  CAS  Google Scholar 

  6. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR (2004) Cell 116:499

    Article  CAS  Google Scholar 

  7. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004) Science 306:2242

    Article  CAS  Google Scholar 

  8. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR (2005) Science 308:1149

    Article  CAS  Google Scholar 

  9. Rudkin GT, Stollar BD (1977) Nature 265:472

    Article  CAS  Google Scholar 

  10. Bauman JG, Wiegant J, Borst P, van Duijn P (1980) Exp Cell Res 128:485

    Article  CAS  Google Scholar 

  11. Nederlof PM, Robinson D, Abuknesha R, Wiegant J, Hopman AH, Tanke HJ, Raap AK (1989) Cytometry 10:20

    Article  CAS  Google Scholar 

  12. Raap AK, van de Rijke FM, Dirks RW, Sol CJ, Boom R, van der Ploeg M (1991) Exp Cell Res 197:319

    Article  CAS  Google Scholar 

  13. Kim H, Arakawa H, Osada T, Ikai A (2002) Colloids Surf B 25:33

    Article  CAS  Google Scholar 

  14. Kim H, Arakawa H, Osada T, Ikai A (2003) Ultramicroscopy 97:359

    Article  CAS  Google Scholar 

  15. Afrin R, Arakawa H, Osada T, Ikai A (2003) Cell Biochem Biophys 39:101

    Article  CAS  Google Scholar 

  16. Afrin R, Yamada T, Ikai A (2004) Ultramicroscopy 100:187

    Article  CAS  Google Scholar 

  17. Afrin R, Ikai A (2006) Biochem Biophys Res Commun 348:238

    Article  CAS  Google Scholar 

  18. Osada T, Uehara H, Kim H, Ikai A (2003) J Nanobiotechnol 1:2

    Article  Google Scholar 

  19. Osada T, Uehara H, Kim H, Ikai A (2004) Adv Clin Chem 38:239

    Article  CAS  Google Scholar 

  20. Uehara H, Osada T, Ikai A (2004) Ultramicroscopy 100:197

    Article  CAS  Google Scholar 

  21. Ducker WA, Senden TJ, Pashley RM (1991) Nature 353:239

    Article  CAS  Google Scholar 

  22. Ducker WA, Senden TJ, Pashley RM (1992) Langmuir 8:1831

    Article  CAS  Google Scholar 

  23. Lee GU, Kidwell DA, Colton RJ (1994) Langmuir 10:354

    Article  CAS  Google Scholar 

  24. Takano H, Kenseth JR, Wong SS, O’Brien JC, Porter MD (1999) Chem Rev 99:2845

    Article  CAS  Google Scholar 

  25. Kim H, Arakawa H, Hatae N, Sugimoto Y, Matsumoto O, Osada T, Ichikawa A, Ikai A (2006) Ultramicroscopy 106:652

    Article  CAS  Google Scholar 

  26. Smith BL, Schaffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Nature 399:761

    Article  CAS  Google Scholar 

  27. Kim H, Arakawa H, Osada T, Ikai A (2002) Appl Surf Sci 188:493

    Article  CAS  Google Scholar 

  28. Kim H, Tsuruta S, Arakawa H, Osada T, Ikai A (2004) Ultramicroscopy 100:203

    Article  CAS  Google Scholar 

  29. Sneddon IN (1965) Int J Eng Sci 3:47

    Article  Google Scholar 

  30. Weihs TP, Nawaz Z, Jarvis SP, Pethica JB (1991) Appl Phys Lett 59:3536

    Article  CAS  Google Scholar 

  31. Ikai A (1996) Surf Sci Rep 26:263

    Article  Google Scholar 

  32. Haga H, Sasaki S, Morimoto M, Kawabata K, Ito E, Abe K, Sambongi T (1998) Jpn J Appl Phys Part 1 37:3860

    Article  CAS  Google Scholar 

  33. Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Ultramicroscopy 82:253

    Article  CAS  Google Scholar 

  34. Charras GT, Lehenkari PP, Horton MA (2001) Ultramicroscopy 86:85

    Article  CAS  Google Scholar 

  35. Sekiguchi H, Arakawa H, Okajima T, Ikai A (2002) Appl Surf Sci 188:489

    Article  CAS  Google Scholar 

  36. Sekiguchi H, Arakawa H, Taguchi H, Ito T, Kokawa R, Ikai  A (2003) Biophys J 85:484

    CAS  Google Scholar 

  37. Romberger DJ (1997) Int J Biochem Cell Biol 29:939

    Article  CAS  Google Scholar 

  38. Sekiguchi K, Hakomori S (1980) Proc Natl Acad Sci USA 77:2661

    Article  CAS  Google Scholar 

  39. Brumfeld V, Werber MM (1993) Arch Biochem Biophys 302:134

    Article  CAS  Google Scholar 

  40. Hynes RO (1987) Cell 48:549

    Article  CAS  Google Scholar 

  41. Ruoslahti E, Pierschbacher MD (1987) Science 238:491

    Article  CAS  Google Scholar 

  42. Hynes RO (1992) Cell 69:11

    Article  CAS  Google Scholar 

  43. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Development 119:1079

    CAS  Google Scholar 

  44. Duband JL, Nuckolls GH, Ishihara A, Hasegawa T, Yamada KM, Thiery JP, Jacobson K (1988) J Cell Biol 107:1385

    Article  CAS  Google Scholar 

  45. Felsenfeld DP, Choquet D, Sheetz MP (1996) Nature 383:438

    Article  CAS  Google Scholar 

  46. Choquet D, Felsenfeld DP, Sheetz MP (1997) Cell 88:39

    Article  CAS  Google Scholar 

  47. Smith JW, Vestal DJ, Irwin SV, Burke TA, Cheresh DA (1990) J Biol Chem 265:11008

    CAS  Google Scholar 

  48. Preissner KT, Seiffert D (1998) Thromb Res 89:1

    Article  CAS  Google Scholar 

  49. Kim JP, Zhang K, Chen JD, Kramer RH, Woodley DT (1994) J Biol Chem 269:26926

    CAS  Google Scholar 

  50. Wayner EA, Orlando RA, Cheresh DA (1991) J Cell Biol 113:919

    Article  CAS  Google Scholar 

  51. Stuiver I, Ruggeri Z, Smith JW (1996) J Cell Physiol 168:521

    Article  CAS  Google Scholar 

  52. DePasquale JA (1998) Histochem Cell Biol 110:485

    Article  CAS  Google Scholar 

  53. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Science 288:154

    Article  CAS  Google Scholar 

  54. Bouvier M (2001) Nat Rev Neurosci 2:274

    Article  CAS  Google Scholar 

  55. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Nat Rev Mol Cell Biol 3:906

    Article  CAS  Google Scholar 

  56. Milton AS, Wendlandt S (1970) J Physiol 207:76P

    CAS  Google Scholar 

  57. Stitt JT (1986) Yale J Biol Med 59:137

    CAS  Google Scholar 

  58. Sirko S, Bishai I, Coceani F (1989) Am J Physiol 256:R616

    CAS  Google Scholar 

  59. Kluger MJ (1991) Physiol Rev 71:93

    CAS  Google Scholar 

  60. Sehic E, Szekely M, Ungar AL, Oladehin A, Blatteis CM (1996) Brain Res Bull 39:391

    Article  CAS  Google Scholar 

  61. Narumiya S, Sugimoto Y, Ushikubi F (1999) Physiol Rev 79:1193

    CAS  Google Scholar 

  62. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T, Hizaki H, Tuboi K, Katsuyama M, Ichikawa A, Tanaka T, Yoshida N, Narumiya S (1998) Nature 395:281

    Article  CAS  Google Scholar 

  63. Lawrence JB, Singer RH (1986) Cell 45:407

    Article  CAS  Google Scholar 

  64. Kislauskis EH, Zhu X, Singer RH (1997) J Cell Biol 136:1263

    Article  CAS  Google Scholar 

  65. Latham VM Jr, Kislauskis EH, Singer RH, Ross AF (1994) J Cell Biol 126:1211

    Article  CAS  Google Scholar 

  66. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727

    Article  CAS  Google Scholar 

  67. Wang T, Ikai A (1999) Jpn J Appl Phys Part 1 38:3912

    Article  CAS  Google Scholar 

  68. Alam MT, Yamada T, Carlsson U, Ikai A (2002) FEBS Lett 519:35

    Article  CAS  Google Scholar 

  69. Bell GI (1978) Science 200:618

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, H. et al. (2008). Application of Atomic Force Microscopy to the Study of Expressed Molecules in or on a Single Living Cell. In: Tomitori, M., Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods IX. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74083-4_7

Download citation

Publish with us

Policies and ethics